論文の概要: Intuitive Axial Augmentation Using Polar-Sine-Based Piecewise Distortion for Medical Slice-Wise Segmentation
- arxiv url: http://arxiv.org/abs/2412.03352v2
- Date: Wed, 26 Mar 2025 15:19:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 14:57:01.069019
- Title: Intuitive Axial Augmentation Using Polar-Sine-Based Piecewise Distortion for Medical Slice-Wise Segmentation
- Title(参考訳): 極sine-based Piecewise Distortion を用いたスライス・ワイズ・セグメンテーションの直観的軸方向増強
- Authors: Yiqin Zhang, Qingkui Chen, Chen Huang, Zhengjie Zhang, Meiling Chen, Zhibing Fu,
- Abstract要約: 我々は,従来のデジタル画像とは別に,医用画像の特徴を再考し,認識する。
本稿では, より弾力性が高く, 放射線検査法に適合する医用別拡張アルゴリズムを提案する。
本手法は,医療従事者にとって直感的な設計と理解の容易さが特徴である。
- 参考スコア(独自算出の注目度): 4.471795611968146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most data-driven models for medical image analysis rely on universal augmentations to improve accuracy. Experimental evidence has confirmed their effectiveness, but the unclear mechanism underlying them poses a barrier to the widespread acceptance and trust in such methods within the medical community. We revisit and acknowledge the unique characteristics of medical images apart from traditional digital images, and consequently, proposed a medical-specific augmentation algorithm that is more elastic and aligns well with radiology scan procedure. The method performs piecewise affine with sinusoidal distorted ray according to radius on polar coordinates, thus simulating uncertain postures of human lying flat on the scanning table. Our method could generate human visceral distribution without affecting the fundamental relative position on axial plane. Two non-adaptive algorithms, namely Meta-based Scan Table Removal and Similarity-Guided Parameter Search, are introduced to bolster robustness of our augmentation method. In contrast to other methodologies, our method is highlighted for its intuitive design and ease of understanding for medical professionals, thereby enhancing its applicability in clinical scenarios. Experiments show our method improves accuracy with two modality across multiple famous segmentation frameworks without requiring more data samples. Our preview code is available in: https://github.com/MGAMZ/PSBPD.
- Abstract(参考訳): 医療画像解析のためのデータ駆動モデルの多くは、精度を向上させるために普遍的な拡張に依存している。
実験的な証拠により効果は確認されているが、その根底にある不明瞭なメカニズムは、医療コミュニティ内で広く受け入れられ、そのような方法への信頼に障害をもたらす。
そこで我々は,従来のデジタル画像とは別に,医用画像の特徴を再検討し認識し,より弾力性が高く,X線学的スキャン法と整合性のある医学特化アルゴリズムを提案する。
本発明の方法は、極座標の半径に応じて正弦波歪んだ光を片方向アフィンで行い、走査テーブル上に横たわっている人間の不確実な姿勢をシミュレートする。
本手法は, 軸方向の相対位置に影響を及ぼすことなく, 人間の内臓分布を生成できる。
メタベースのスキャンテーブル除去と類似性誘導パラメータ探索という2つの非適応アルゴリズムを導入し,拡張手法のロバスト性を高めた。
他の手法とは対照的に,本手法は直感的な設計と医療従事者への理解の容易さで強調され,臨床シナリオにおける適用性の向上に寄与する。
実験により、複数の有名なセグメンテーションフレームワーク間で、より多くのデータサンプルを必要とせずに、2つのモダリティで精度を向上することを示す。
プレビューコードは、https://github.com/MGAMZ/PSBPD.comで利用可能です。
関連論文リスト
- Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - A Two-Stage Generative Model with CycleGAN and Joint Diffusion for
MRI-based Brain Tumor Detection [41.454028276986946]
本稿では,脳腫瘍の検出とセグメンテーションを改善するための2段階生成モデル(TSGM)を提案する。
CycleGANは、未ペアデータに基づいてトレーニングされ、データとして正常な画像から異常な画像を生成する。
VE-JPは、合成対の異常画像をガイドとして使用して、健康な画像の再構成を行う。
論文 参考訳(メタデータ) (2023-11-06T12:58:26Z) - AnoDODE: Anomaly Detection with Diffusion ODE [0.0]
異常検出は、データセットの大部分から著しく逸脱する非定型的なデータサンプルを特定するプロセスである。
医用画像から抽出した特徴量の密度を推定し,拡散モードに基づく新しい異常検出手法を提案する。
提案手法は異常を識別するだけでなく,画像レベルと画素レベルでの解釈性も提供する。
論文 参考訳(メタデータ) (2023-10-10T08:44:47Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
我々は,グループ洞察の分布を学習することで,複数の可算出力を生成する単一拡散モデルに基づくアプローチを提案する。
提案モデルでは,拡散の固有のサンプリングプロセスを利用してセグメンテーションマスクの分布を生成する。
その結果,提案手法は既存の最先端曖昧なセグメンテーションネットワークよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-04-10T17:58:22Z) - Acute ischemic stroke lesion segmentation in non-contrast CT images
using 3D convolutional neural networks [0.0]
非コントラストCT脳画像における急性虚血性脳梗塞の容積分画を目的とした自動アルゴリズムを提案する。
我々のディープラーニングアプローチは、人気のある3D U-Net畳み込みニューラルネットワークアーキテクチャに基づいている。
論文 参考訳(メタデータ) (2023-01-17T10:39:39Z) - PrepNet: A Convolutional Auto-Encoder to Homogenize CT Scans for
Cross-Dataset Medical Image Analysis [0.22485007639406518]
新型コロナウイルスの診断はPCR検査で効率的に行えるようになったが、このユースケースは、データの多様性を克服する方法論の必要性を実証するものだ。
本稿では,CTスキャンに最小限の変更を同時に導入しながら,イメージング技術によって引き起こされる差を解消することを目的とした,新しい生成手法を提案する。
論文 参考訳(メタデータ) (2022-08-19T15:49:47Z) - CRISP - Reliable Uncertainty Estimation for Medical Image Segmentation [6.197149831796131]
本研究では,不確実性予測のためのCRISPをContRastive Imageとして提案する。
CRISPはその中核として、有効なセグメンテーションの分布を符号化するジョイント潜在空間を学習するためのコントラスト的手法を実装している。
この共同潜伏空間を用いて予測を数千の潜伏ベクトルと比較し、解剖学的に一貫した不確実性写像を提供する。
論文 参考訳(メタデータ) (2022-06-15T16:56:58Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
我々は3つの公開データセットの実験を行い、ディープニューラルネットワークにおける異なる前処理ステップの効果を評価する。
その結果、最も一般的な標準化手順は、ネットワーク性能に何の価値も与えないことが示されている。
画像の規格化に伴う信号分散の低減のため,画像強度正規化手法はモデル精度に寄与しない。
論文 参考訳(メタデータ) (2022-04-11T17:29:36Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Soft-Label Anonymous Gastric X-ray Image Distillation [49.24576562557866]
本稿では,勾配降下法に基づく軟式ラベル匿名胃X線画像蒸留法を提案する。
実験の結果,提案手法は医療データセットを効果的に圧縮するだけでなく,患者の個人情報を保護するために医療画像の匿名化も可能であることがわかった。
論文 参考訳(メタデータ) (2021-04-07T02:04:12Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Segmentation-Renormalized Deep Feature Modulation for Unpaired Image
Harmonization [0.43012765978447565]
サイクル一貫性のある生成共役ネットワークは、ソースとターゲットドメイン間のイメージセットの調和に使われてきた。
これらの手法は、不安定性、コントラストの逆転、病理の難治性操作、および実際の医用画像における信頼性を制限したステガノグラフィーマッピングの傾向が強い。
解剖学的レイアウトを維持しながらスキャナ間の調和を低減するセグメンテーション正規化画像翻訳フレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-11T23:53:51Z) - Multi-structure bone segmentation in pediatric MR images with combined
regularization from shape priors and adversarial network [0.4588028371034407]
異種小児磁気共鳴(MR)画像のセグメント化に難渋する課題に対して,新たにトレーニングした正規化畳み込みエンコーダデコーダネットワークを提案する。
グローバルに一貫した予測を得るために,オートエンコーダで学習した非線形形状表現から得られる,形状先行に基づく正規化を組み込む。
提案手法は,Dice, 感度, 特異性, 最大対称表面距離, 平均対称表面距離, および相対絶対体積差の測定値について, 従来提案した手法と同等あるいは同等に動作した。
論文 参考訳(メタデータ) (2020-09-15T13:39:53Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Y-Net for Chest X-Ray Preprocessing: Simultaneous Classification of
Geometry and Segmentation of Annotations [70.0118756144807]
この研究は、機械学習アルゴリズムに胸部X線入力のための一般的な前処理ステップを導入する。
VGG11エンコーダをベースとした改良Y-Netアーキテクチャを用いて,ラジオグラフィの幾何学的配向とセグメンテーションを同時に学習する。
対照画像の27.0%,34.9%に対し,95.8%,96.2%のアノテーションマスクが認められた。
論文 参考訳(メタデータ) (2020-05-08T02:16:17Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。