Improving Water Quality Time-Series Prediction in Hong Kong using Sentinel-2 MSI Data and Google Earth Engine Cloud Computing
- URL: http://arxiv.org/abs/2408.14010v2
- Date: Tue, 27 Aug 2024 08:02:49 GMT
- Title: Improving Water Quality Time-Series Prediction in Hong Kong using Sentinel-2 MSI Data and Google Earth Engine Cloud Computing
- Authors: Rohin Sood, Kevin Zhu,
- Abstract summary: This study develops time-series models to predict chlorophyll-a (Chl-a), suspended solids (SS), and turbidity using Sentinel-2 satellite data and Google Earth Engine (GEE) in the coastal regions of Hong Kong.
- Score: 2.186901738997927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective water quality monitoring in coastal regions is crucial due to the progressive deterioration caused by pollution and human activities. To address this, this study develops time-series models to predict chlorophyll-a (Chl-a), suspended solids (SS), and turbidity using Sentinel-2 satellite data and Google Earth Engine (GEE) in the coastal regions of Hong Kong. Leveraging Long Short-Term Memory (LSTM) Recurrent Neural Networks, the study incorporates extensive temporal datasets to enhance prediction accuracy. The models utilize spectral data from Sentinel-2, focusing on optically active components, and demonstrate that selected variables closely align with the spectral characteristics of Chl-a and SS. The results indicate improved predictive performance over previous methods, highlighting the potential for remote sensing technology in continuous and comprehensive water quality assessment.
Related papers
- Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - Prediction of Sentinel-2 multi-band imagery with attention BiLSTM for continuous earth surface monitoring [0.0]
This study proposes a framework based on an attention Bidirectional Long Short-Term Memory (BiLSTM) network for predicting multiband images.
Our model can forecast target images on user-defined dates, including future dates and periods characterized by persistent cloud cover.
arXiv Detail & Related papers (2024-06-30T21:07:11Z) - VN-Net: Vision-Numerical Fusion Graph Convolutional Network for Sparse Spatio-Temporal Meteorological Forecasting [12.737085738169164]
VN-Net is the first attempt to introduce GCN method to utilize multi-modal data for better handling sparse-temporal meteorological forecasting.
VN-Net outperforms state-of-the-art by a significant margin on mean absolute error (MAE) and root mean square error (RMSE) for temperature, relative humidity, and forecasting.
arXiv Detail & Related papers (2024-01-26T12:41:57Z) - Using Multi-Temporal Sentinel-1 and Sentinel-2 data for water bodies
mapping [40.996860106131244]
Climate change is intensifying extreme weather events, causing both water scarcity and severe rainfall unpredictability.
This paper aims to provide valuable insights for comprehensive water resource monitoring under diverse meteorological conditions.
arXiv Detail & Related papers (2024-01-05T18:11:08Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
We introduce a deep learning approach for the retrieval of wind speed time series from underwater acoustics.
Our approach bridges data assimilation and learning-based frameworks to benefit both from prior physical knowledge and computational efficiency.
arXiv Detail & Related papers (2022-08-18T15:27:40Z) - Towards Daily High-resolution Inundation Observations using Deep
Learning and EO [0.0]
Constantly remote sensing presents a cost-effective solution for synoptic flood monitoring.
Satellites do offer timely inundation information when they cover an ongoing flood event, but they are limited by their resolution in terms of their ability to monitor flood evolution at various scales.
Data from satellites, such as the Copernicus Sentinels, which have high spatial and low temporal resolution, with data from NASA SMAP and GPM missions could yield high-resolution flood inundation at a daily scale.
arXiv Detail & Related papers (2022-08-10T14:04:50Z) - STIP: A SpatioTemporal Information-Preserving and Perception-Augmented
Model for High-Resolution Video Prediction [78.129039340528]
We propose a Stemporal Information-Preserving and Perception-Augmented Model (STIP) to solve the above two problems.
The proposed model aims to preserve thetemporal information for videos during the feature extraction and the state transitions.
Experimental results show that the proposed STIP can predict videos with more satisfactory visual quality compared with a variety of state-of-the-art methods.
arXiv Detail & Related papers (2022-06-09T09:49:04Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z) - Time series and machine learning to forecast the water quality from
satellite data [0.0]
Algal blooms are a coastal pollutant that is a cause of concern.
Many satellite data, such as MODIS, have been used to generate water-quality products to detect the blooms.
For monitoring, pollution control boards will need nowcasts and forecasts of any pollution.
arXiv Detail & Related papers (2020-03-16T18:16:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.