Genetic Algorithm Based System for Path Planning with Unmanned Aerial Vehicles Swarms in Cell-Grid Environments
- URL: http://arxiv.org/abs/2412.03433v1
- Date: Wed, 04 Dec 2024 16:24:41 GMT
- Title: Genetic Algorithm Based System for Path Planning with Unmanned Aerial Vehicles Swarms in Cell-Grid Environments
- Authors: Alejandro Puente-Castro, Enrique Fernandez-Blanco, Daniel Rivero,
- Abstract summary: Path Planning methods for autonomously controlling swarms of unmanned aerial vehicles (UAVs) are gaining momentum.
An increasing number of scenarios now require autonomous control of multiple UAVs, as autonomous operation can significantly reduce labor costs.
Many of these scenarios, however, involve obstacles such as power lines and trees, which complicate Path Planning.
This paper presents an evolutionary-based system employing genetic algorithms to address this problem in environments with obstacles.
- Score: 42.72938925647165
- License:
- Abstract: Path Planning methods for autonomously controlling swarms of unmanned aerial vehicles (UAVs) are gaining momentum due to their operational advantages. An increasing number of scenarios now require autonomous control of multiple UAVs, as autonomous operation can significantly reduce labor costs. Additionally, obtaining optimal flight paths can lower energy consumption, thereby extending battery life for other critical operations. Many of these scenarios, however, involve obstacles such as power lines and trees, which complicate Path Planning. This paper presents an evolutionary computation-based system employing genetic algorithms to address this problem in environments with obstacles. The proposed approach aims to ensure complete coverage of areas with fixed obstacles, such as in field exploration tasks, while minimizing flight time regardless of map size or the number of UAVs in the swarm. No specific goal points or prior information beyond the provided map is required. The experiments conducted in this study used five maps of varying sizes and obstacle densities, as well as a control map without obstacles, with different numbers of UAVs. The results demonstrate that this method can determine optimal paths for all UAVs during full map traversal, thus minimizing resource consumption. A comparative analysis with other state-of-the-art approach is presented to highlight the advantages and potential limitations of the proposed method.
Related papers
- Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
The low-altitude economy (LAE), driven by unmanned aerial vehicles (UAVs) and other aircraft, has revolutionized fields such as transportation, agriculture, and environmental monitoring.
In the upcoming six-generation (6G) era, UAV-assisted mobile edge computing (MEC) is particularly crucial in challenging environments such as mountainous or disaster-stricken areas.
The task offloading problem is one of the key issues in UAV-assisted MEC, primarily addressing the trade-off between minimizing the task delay and the energy consumption of the UAV.
arXiv Detail & Related papers (2025-01-11T02:32:42Z) - SCoTT: Wireless-Aware Path Planning with Vision Language Models and Strategic Chains-of-Thought [78.53885607559958]
A novel approach using vision language models (VLMs) is proposed for enabling path planning in complex wireless-aware environments.
To this end, insights from a digital twin with real-world wireless ray tracing data are explored.
Results show that SCoTT achieves very close average path gains compared to DP-WA* while at the same time yielding consistently shorter path lengths.
arXiv Detail & Related papers (2024-11-27T10:45:49Z) - Anti-Jamming Path Planning Using GCN for Multi-UAV [0.0]
The effectiveness of UAV swarms can be severely compromised by jamming technology.
A novel approach, where UAV swarms leverage collective intelligence to predict jamming areas, is proposed.
A multi-agent control algorithm is then employed to disperse the UAV swarm, avoid jamming, and regroup upon reaching the target.
arXiv Detail & Related papers (2024-03-13T07:28:05Z) - Solving Complex Multi-UAV Mission Planning Problems using
Multi-objective Genetic Algorithms [4.198865250277024]
This paper presents a new Multi-Objective Genetic Algorithm for solving complex Mission Planning Problems (MPP)
A hybrid fitness function has been designed using a Constraint Satisfaction Problem (CSP) to check if solutions are valid.
Experimental results show that the new algorithm is able to obtain good solutions, however as the problem becomes more complex, the optimal solutions also become harder to find.
arXiv Detail & Related papers (2024-02-09T16:13:21Z) - Q-Learning based system for path planning with unmanned aerial vehicles
swarms in obstacle environments [38.82157836789187]
A Reinforcement Learning based system is proposed for solving this problem in environments with obstacles by making use of Q-Learning.
The goal of these paths is to ensure complete coverage of an area with fixed obstacles for tasks, like field prospecting.
The results are satisfactory, showing that the system obtains solutions in fewer movements the more UAVs there are.
arXiv Detail & Related papers (2023-03-30T18:37:34Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - Efficient UAV Trajectory-Planning using Economic Reinforcement Learning [65.91405908268662]
We introduce REPlanner, a novel reinforcement learning algorithm inspired by economic transactions to distribute tasks between UAVs.
We formulate the path planning problem as a multi-agent economic game, where agents can cooperate and compete for resources.
As the system computes task distributions via UAV cooperation, it is highly resilient to any change in the swarm size.
arXiv Detail & Related papers (2021-03-03T20:54:19Z) - Congestion-aware Evacuation Routing using Augmented Reality Devices [96.68280427555808]
We present a congestion-aware routing solution for indoor evacuation, which produces real-time individual-customized evacuation routes among multiple destinations.
A population density map, obtained on-the-fly by aggregating locations of evacuees from user-end Augmented Reality (AR) devices, is used to model the congestion distribution inside a building.
arXiv Detail & Related papers (2020-04-25T22:54:35Z) - Bypassing or flying above the obstacles? A novel multi-objective UAV
path planning problem [0.0]
This study proposes a novel integer programming model for a collision-free discrete drone path planning problem.
Considering the possibility of bypassing obstacles or flying above them, this study aims to minimize the path length, energy consumption, and maximum path risk simultaneously.
arXiv Detail & Related papers (2020-04-12T13:42:05Z) - Three Dimensional Route Planning for Multiple Unmanned Aerial Vehicles
using Salp Swarm Algorithm [0.0]
Route planning is a series of translation and rotational steps from a given start location to the destination goal location.
The proposed approach improves the average cost and overall time by 1.25% and 6.035% respectively.
arXiv Detail & Related papers (2019-11-24T12:36:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.