論文の概要: Using SlowFast Networks for Near-Miss Incident Analysis in Dashcam Videos
- arxiv url: http://arxiv.org/abs/2412.03903v1
- Date: Thu, 05 Dec 2024 06:20:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:41:11.827135
- Title: Using SlowFast Networks for Near-Miss Incident Analysis in Dashcam Videos
- Title(参考訳): SlowFast Networks を用いたダッシュカム映像の近距離事故解析
- Authors: Yucheng Zhang, Koichi Emura, Eiji Watanabe,
- Abstract要約: 本稿では、脳内の2つの異なるストリームによって処理される遅くて速い視覚情報の特徴を模倣するSlowFastディープニューラルネットワークを用いて、近距離トラフィックビデオの分類を行う。
この手法は交通の近距離映像解析の精度を大幅に向上させ,交通シナリオにおける人間の視覚知覚に対する洞察を与える。
- 参考スコア(独自算出の注目度): 1.0445957451908694
- License:
- Abstract: This paper classifies near-miss traffic videos using the SlowFast deep neural network that mimics the characteristics of the slow and fast visual information processed by two different streams from the M (Magnocellular) and P (Parvocellular) cells of the human brain. The approach significantly improves the accuracy of the traffic near-miss video analysis and presents insights into human visual perception in traffic scenarios. Moreover, it contributes to traffic safety enhancements and provides novel perspectives on the potential cognitive errors in traffic accidents.
- Abstract(参考訳): 本稿では,ヒト脳のM (Magnocellular) 細胞とP (Parvocellular) 細胞から処理される2つの異なるストリームによって処理される遅くて高速な視覚情報の特徴を模倣した,SlowFast ディープニューラルネットワークを用いて近距離交通映像を分類する。
この手法は交通の近距離映像解析の精度を大幅に向上させ,交通シナリオにおける人間の視覚知覚に対する洞察を与える。
さらに、交通安全の強化に寄与し、交通事故における認知的誤りの可能性について、新たな視点を提供する。
関連論文リスト
- IncidentNet: Traffic Incident Detection, Localization and Severity Estimation with Sparse Sensing [0.6787248655856052]
IncidentNetは、トラフィックインシデントの深刻度を分類、ローカライズ、推定するための新しいアプローチである。
本モデルでは,交通交差点に設置したカメラを用いて収集可能な微視的交通データについて検討する。
論文 参考訳(メタデータ) (2024-08-02T04:09:15Z) - ICST-DNET: An Interpretable Causal Spatio-Temporal Diffusion Network for Traffic Speed Prediction [47.17205142864036]
ICST-DENTはSpatio-Temporal Causality Learning (STCL)、Causal Graph Generation (CGG)、Speed Fluctuation Pattern Recognition (SFPR)の3つの部分から構成されている。
ICST-DENTは、より高い予測精度、因果関係を説明する能力、異なるシナリオへの適応性によって証明されているように、既存のすべてのベースラインを上回ることができる。
論文 参考訳(メタデータ) (2024-04-22T03:35:19Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - Text-Driven Traffic Anomaly Detection with Temporal High-Frequency Modeling in Driving Videos [22.16190711818432]
本稿では,ビデオクリップをテキストプロンプトと整合させる新しい単一ステージ手法であるTHFを紹介し,交通異常検出の新しい視点を提供する。
従来の手法とは異なり、我々の手法の教師付き信号は1ホットベクトルではなく言語から派生しており、より包括的な表現を提供する。
提案したTTHFは,DoTAデータセット上で,+5.4%のAUCで,最先端の競合よりも優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-01-07T15:47:19Z) - Traffic Volume Prediction using Memory-Based Recurrent Neural Networks:
A comparative analysis of LSTM and GRU [5.320087179174425]
我々は、リアルタイムにトラフィック量を予測するための非線形メモリベースディープニューラルネットワークモデルを開発した。
本実験は,高ダイナミックかつ異種交通環境における交通量予測における提案モデルの有効性を実証するものである。
論文 参考訳(メタデータ) (2023-03-22T15:25:07Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - Traffic-Net: 3D Traffic Monitoring Using a Single Camera [1.1602089225841632]
我々は,1台のCCTVトラヒックカメラを用いたリアルタイムトラヒック監視のための実用的なプラットフォームを提供する。
車両・歩行者検出のためのカスタムYOLOv5ディープニューラルネットワークモデルとSORT追跡アルゴリズムの改良を行った。
また、短時間・長期の時間的ビデオデータストリームに基づく階層的なトラフィックモデリングソリューションも開発している。
論文 参考訳(メタデータ) (2021-09-19T16:59:01Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
移動車に搭載されたカメラから車両の速度を推定する問題を考察する。
そこで本研究では,まずオフ・ザ・シェルフ・トラッカーを用いて車両バウンディングボックスを抽出し,その後,小型ニューラルネットワークを用いて車両速度を回帰する2段階のアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-16T13:10:27Z) - Learning Traffic Speed Dynamics from Visualizations [3.0969191504482243]
時空の可視化からマクロ交通速度のダイナミクスを学習する深層学習法を提案する。
既存の推定手法と比較して,より詳細な推定解決が可能となる。
次世代シミュレーションプログラム(NGSIM)とドイツ高速道路(HighD)のデータセットから得られたデータを用いて,高速道路区間の高分解能交通速度場を推定した。
論文 参考訳(メタデータ) (2021-05-04T11:17:43Z) - End-to-end Learning for Inter-Vehicle Distance and Relative Velocity
Estimation in ADAS with a Monocular Camera [81.66569124029313]
本稿では,ディープニューラルネットワークのエンドツーエンドトレーニングに基づくカメラによる車間距離と相対速度推定手法を提案する。
提案手法の重要な特徴は,2つの時間的単眼フレームによって提供される複数の視覚的手がかりの統合である。
また,移動場における視線歪みの影響を緩和する車両中心サンプリング機構を提案する。
論文 参考訳(メタデータ) (2020-06-07T08:18:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。