論文の概要: Modeling Eye Gaze Velocity Trajectories using GANs with Spectral Loss for Enhanced Fidelity
- arxiv url: http://arxiv.org/abs/2412.04184v1
- Date: Thu, 05 Dec 2024 14:23:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:42:01.433587
- Title: Modeling Eye Gaze Velocity Trajectories using GANs with Spectral Loss for Enhanced Fidelity
- Title(参考訳): スペクトル損失GANを用いた眼球運動速度軌跡のモデリング
- Authors: Shailendra Bhandari, Pedro Lencastre, Rujeena Mathema, Alexander Szorkovszky, Anis Yazidi, Pedro Lind,
- Abstract要約: 本研究では、LSTMおよびCNNジェネレータを用いたGANフレームワークを導入し、高忠実な合成視線速度軌道を生成する。
スペクトル正則化の導入は、眼球運動のスペクトル特性を再現するGANの能力を著しく向上させる。
- 参考スコア(独自算出の注目度): 38.972340249998126
- License:
- Abstract: Accurate modeling of eye gaze dynamics is essential for advancement in human-computer interaction, neurological diagnostics, and cognitive research. Traditional generative models like Markov models often fail to capture the complex temporal dependencies and distributional nuance inherent in eye gaze trajectories data. This study introduces a GAN framework employing LSTM and CNN generators and discriminators to generate high-fidelity synthetic eye gaze velocity trajectories. We conducted a comprehensive evaluation of four GAN architectures: CNN-CNN, LSTM-CNN, CNN-LSTM, and LSTM-LSTM trained under two conditions: using only adversarial loss and using a weighted combination of adversarial and spectral losses. Our findings reveal that the LSTM-CNN architecture trained with this new loss function exhibits the closest alignment to the real data distribution, effectively capturing both the distribution tails and the intricate temporal dependencies. The inclusion of spectral regularization significantly enhances the GANs ability to replicate the spectral characteristics of eye gaze movements, leading to a more stable learning process and improved data fidelity. Comparative analysis with an HMM optimized to four hidden states further highlights the advantages of the LSTM-CNN GAN. Statistical metrics show that the HMM-generated data significantly diverges from the real data in terms of mean, standard deviation, skewness, and kurtosis. In contrast, the LSTM-CNN model closely matches the real data across these statistics, affirming its capacity to model the complexity of eye gaze dynamics effectively. These results position the spectrally regularized LSTM-CNN GAN as a robust tool for generating synthetic eye gaze velocity data with high fidelity.
- Abstract(参考訳): 視線力学の正確なモデリングは、人間とコンピュータの相互作用、神経学的診断、認知研究の進展に不可欠である。
マルコフモデルのような伝統的な生成モデルは、視線軌跡データに固有の複雑な時間的依存と分布のニュアンスを捉えるのに失敗することが多い。
本研究では、LSTMとCNNジェネレータと識別器を用いて、高忠実な合成眼球速度軌道を生成するGANフレームワークを提案する。
CNN-CNN, LSTM-CNN, CNN-LSTM, LSTM-LSTMの4つのアーキテクチャを総合的に評価した。
この新たな損失関数でトレーニングされたLSTM-CNNアーキテクチャは、実際のデータ分布に最も近いアライメントを示し、分布尾と複雑な時間的依存関係の両方を効果的にキャプチャする。
スペクトル正則化の導入は、視線運動のスペクトル特性を再現するGANの能力を著しく向上させ、より安定した学習プロセスとデータ忠実性の向上につながった。
4つの隠れ状態に最適化されたHMMとの比較分析は、LSTM-CNN GANの利点をさらに強調する。
統計的指標から、HMM生成データは平均、標準偏差、歪み、硬変の点で実際のデータと大きく異なることが分かる。
対照的に、LSTM-CNNモデルはこれらの統計学の実際のデータと密に一致し、視線力学の複雑さを効果的にモデル化する能力を確認している。
これらの結果は、スペクトル規則化LSTM-CNN GANを高忠実度で合成眼球速度データを生成する頑健なツールとして位置づけた。
関連論文リスト
- Enhancing SNN-based Spatio-Temporal Learning: A Benchmark Dataset and Cross-Modality Attention Model [30.66645039322337]
高品質なベンチマークデータセットは、ニューラルネットワーク(SNN)の発展に非常に重要である
しかし、SNNベースのクロスモーダル融合はまだ未定である。
本研究では,SNNの時間的特性をよりよく活用できるニューロモルフィックデータセットを提案する。
論文 参考訳(メタデータ) (2024-10-21T06:59:04Z) - Enhancing Cognitive Workload Classification Using Integrated LSTM Layers and CNNs for fNIRS Data Analysis [13.74551296919155]
本稿では、ディープラーニングモデルにおける畳み込みニューラルネットワーク(CNN)の有効性に対する長期記憶層の影響について検討する。
LSTMレイヤを統合することで、モデルがfNIRSデータ内の時間的依存関係をキャプチャし、認知状態をより包括的に理解することが可能になる。
論文 参考訳(メタデータ) (2024-07-22T11:28:34Z) - A Generative Self-Supervised Framework using Functional Connectivity in
fMRI Data [15.211387244155725]
機能的磁気共鳴イメージング(fMRI)データから抽出した機能的接続性(FC)ネットワークを訓練したディープニューラルネットワークが人気を博している。
グラフニューラルネットワーク(GNN)のFCへの適用に関する最近の研究は、FCの時間変化特性を活用することにより、モデル予測の精度と解釈可能性を大幅に向上させることができることを示唆している。
高品質なfMRIデータとそれに対応するラベルを取得するための高コストは、実環境において彼らのアプリケーションにハードルをもたらす。
本研究では,動的FC内の時間情報を効果的に活用するためのSSL生成手法を提案する。
論文 参考訳(メタデータ) (2023-12-04T16:14:43Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Space-Time Graph Neural Networks with Stochastic Graph Perturbations [100.31591011966603]
時空間グラフニューラルネットワーク(ST-GNN)は、時間変動データの効率的なグラフ表現を学習する。
本稿では,ST-GNNの特性を再検討し,安定なグラフ安定性を示す。
解析の結果,ST-GNNは時間変化グラフ上での移動学習に適していることが示唆された。
論文 参考訳(メタデータ) (2022-10-28T16:59:51Z) - From Environmental Sound Representation to Robustness of 2D CNN Models
Against Adversarial Attacks [82.21746840893658]
本稿では, 各種環境音響表現(スペクトログラム)が, 被害者残差畳み込みニューラルネットワークの認識性能と対角攻撃性に与える影響について検討する。
DWTスペクトログラムでトレーニングしたResNet-18モデルでは高い認識精度が得られたが、このモデルに対する攻撃は敵にとって比較的コストがかかる。
論文 参考訳(メタデータ) (2022-04-14T15:14:08Z) - Network Level Spatial Temporal Traffic State Forecasting with Hierarchical-Attention-LSTM (HierAttnLSTM) [0.0]
本稿では,オープンベンチマークにホストされたPeMS(Caltrans Performance Measurement System)から,多様なトラフィック状態データセットを活用する。
我々は,低レベルから高レベルLong Short-Term Memory (LSTM) ネットワーク間のセルおよび隠れ状態とアテンションプーリング機構を統合した。
構築された階層構造は、ネットワークレベルのトラフィック状態の空間的時間的相関をキャプチャして、異なる時間スケールにまたがる依存関係を考慮に入れられるように設計されている。
論文 参考訳(メタデータ) (2022-01-15T05:25:03Z) - A journey in ESN and LSTM visualisations on a language task [77.34726150561087]
我々は,CSL(Cross-Situationnal Learning)タスクでESNとLSTMを訓練した。
その結果, 性能比較, 内部力学解析, 潜伏空間の可視化の3種類が得られた。
論文 参考訳(メタデータ) (2020-12-03T08:32:01Z) - Automatic Remaining Useful Life Estimation Framework with Embedded
Convolutional LSTM as the Backbone [5.927250637620123]
組込み畳み込みLSTM(E NeuralTM)と呼ばれる新しいLSTM変種を提案する。
ETMでは、異なる1次元の畳み込みの群がLSTM構造に埋め込まれている。
RUL推定のために広く用いられているいくつかのベンチマークデータセットに対する最先端のアプローチよりも,提案したEMMアプローチの方が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-10T08:34:20Z) - Object Tracking through Residual and Dense LSTMs [67.98948222599849]
LSTM(Long Short-Term Memory)リカレントニューラルネットワークに基づくディープラーニングベースのトラッカーが、強力な代替手段として登場した。
DenseLSTMはResidualおよびRegular LSTMより優れ、ニュアンセに対する高いレジリエンスを提供する。
ケーススタディは、他のトラッカーの堅牢性を高めるために残差ベースRNNの採用を支援する。
論文 参考訳(メタデータ) (2020-06-22T08:20:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。