SCADE: Scalable Framework for Anomaly Detection in High-Performance System
- URL: http://arxiv.org/abs/2412.04259v2
- Date: Mon, 09 Dec 2024 18:57:27 GMT
- Title: SCADE: Scalable Framework for Anomaly Detection in High-Performance System
- Authors: Vaishali Vinay, Anjali Mangal,
- Abstract summary: Command-line interfaces remain integral to high-performance computing environments.<n>Traditional security solutions struggle to detect anomalies due to their context-specific nature, lack of labeled data, and the prevalence of sophisticated attacks like Living-off-the-Land (LOL)<n>We introduce the Scalable Command-Line Anomaly Detection Engine (SCADE), a framework that combines global statistical models with local context-specific analysis for unsupervised anomaly detection.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As command-line interfaces remain integral to high-performance computing environments, the risk of exploitation through stealthy and complex command-line abuse grows. Conventional security solutions struggle to detect these anomalies due to their context-specific nature, lack of labeled data, and the prevalence of sophisticated attacks like Living-off-the-Land (LOL). To address this gap, we introduce the Scalable Command-Line Anomaly Detection Engine (SCADE), a framework that combines global statistical models with local context-specific analysis for unsupervised anomaly detection. SCADE leverages novel statistical methods, including BM25 and Log Entropy, alongside dynamic thresholding to adaptively detect rare, malicious command-line patterns in low signal-to-noise ratio (SNR) environments. Experimental results show that SCADE achieves above 98% SNR in identifying anomalous behavior while minimizing false positives. Designed for scalability and precision, SCADE provides an innovative, metadata-enriched approach to anomaly detection, offering a robust solution for cybersecurity in high-computation environments. This work presents SCADE's architecture, detection methodology, and its potential for enhancing anomaly detection in enterprise systems. We argue that SCADE represents a significant advancement in unsupervised anomaly detection, offering a robust, adaptive framework for security analysts and researchers seeking to enhance detection accuracy in high-computation environments.
Related papers
- Distributed Log-driven Anomaly Detection System based on Evolving Decision Making [4.183506125389502]
CEDLog is a framework that implements distributed computing for scalable processing by integrating Apache Airflow and Dask.
In CEDLog, anomalies are detected through the synthesis of Multi-layer Perceptron (MLP) and Graph Convolutional Networks (GCNs) using critical features present in event logs.
arXiv Detail & Related papers (2025-04-03T06:50:30Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
This paper presents a hybrid framework that integrates both statistical feature selection and classification techniques to improve defect detection accuracy.
We present around 55 distinguished features that are extracted from industrial images, which are then analyzed using statistical methods.
By integrating these methods with flexible machine learning applications, the proposed framework improves detection accuracy and reduces false positives and misclassifications.
arXiv Detail & Related papers (2024-12-11T22:12:21Z) - Risk-Averse Certification of Bayesian Neural Networks [70.44969603471903]
We propose a Risk-Averse Certification framework for Bayesian neural networks called RAC-BNN.
Our method leverages sampling and optimisation to compute a sound approximation of the output set of a BNN.
We validate RAC-BNN on a range of regression and classification benchmarks and compare its performance with a state-of-the-art method.
arXiv Detail & Related papers (2024-11-29T14:22:51Z) - Reshaping the Online Data Buffering and Organizing Mechanism for Continual Test-Time Adaptation [49.53202761595912]
Continual Test-Time Adaptation involves adapting a pre-trained source model to continually changing unsupervised target domains.
We analyze the challenges of this task: online environment, unsupervised nature, and the risks of error accumulation and catastrophic forgetting.
We propose an uncertainty-aware buffering approach to identify and aggregate significant samples with high certainty from the unsupervised, single-pass data stream.
arXiv Detail & Related papers (2024-07-12T15:48:40Z) - Secure Hierarchical Federated Learning in Vehicular Networks Using Dynamic Client Selection and Anomaly Detection [10.177917426690701]
Hierarchical Federated Learning (HFL) faces the challenge of adversarial or unreliable vehicles in vehicular networks.
Our study introduces a novel framework that integrates dynamic vehicle selection and robust anomaly detection mechanisms.
Our proposed algorithm demonstrates remarkable resilience even under intense attack conditions.
arXiv Detail & Related papers (2024-05-25T18:31:20Z) - Pattern-Based Time-Series Risk Scoring for Anomaly Detection and Alert Filtering -- A Predictive Maintenance Case Study [3.508168174653255]
We propose a fast and efficient approach to anomaly detection and alert filtering based on sequential pattern similarities.
We show how this approach can be leveraged for a variety of purposes involving anomaly detection on a large scale real-world industrial system.
arXiv Detail & Related papers (2024-05-24T20:27:45Z) - Incorporating Gradients to Rules: Towards Lightweight, Adaptive Provenance-based Intrusion Detection [11.14938737864796]
We propose CAPTAIN, a rule-based PIDS capable of automatically adapting to diverse environments.
We build a differentiable tag propagation framework and utilize the gradient descent algorithm to optimize these adaptive parameters.
The evaluation results demonstrate that CAPTAIN offers better detection accuracy, less detection latency, lower runtime overhead, and more interpretable detection alarms and knowledge.
arXiv Detail & Related papers (2024-04-23T03:50:57Z) - Federated Learning with Anomaly Detection via Gradient and Reconstruction Analysis [2.28438857884398]
We introduce a novel framework that synergizes gradient-based analysis with autoencoder-driven data reconstruction to detect and mitigate poisoned data with unprecedented precision.
Our method outperforms existing solutions by 15% in anomaly detection accuracy while maintaining a minimal false positive rate.
Our work paves the way for future advancements in distributed learning security.
arXiv Detail & Related papers (2024-03-15T03:54:45Z) - ADT: Agent-based Dynamic Thresholding for Anomaly Detection [4.356615197661274]
We propose an agent-based dynamic thresholding (ADT) framework based on a deep Q-network.
An auto-encoder is utilized in this study to obtain feature representations and produce anomaly scores for complex input data.
ADT can adjust thresholds adaptively by utilizing the anomaly scores from the auto-encoder.
arXiv Detail & Related papers (2023-12-03T19:07:30Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Active Learning-based Isolation Forest (ALIF): Enhancing Anomaly
Detection in Decision Support Systems [2.922007656878633]
ALIF is a lightweight modification of the popular Isolation Forest that proved superior performances with respect to other state-of-art algorithms.
The proposed approach is particularly appealing in the presence of a Decision Support System (DSS), a case that is increasingly popular in real-world scenarios.
arXiv Detail & Related papers (2022-07-08T14:36:38Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Diminishing Empirical Risk Minimization for Unsupervised Anomaly
Detection [0.0]
Empirical Risk Minimization (ERM) assumes that the performance of an algorithm on an unknown distribution can be approximated by averaging losses on the known training set.
We propose a novel Diminishing Empirical Risk Minimization (DERM) framework to break through the limitations of ERM.
DERM adaptively adjusts the impact of individual losses through a well-devised aggregation strategy.
arXiv Detail & Related papers (2022-05-29T14:18:26Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Real-World Anomaly Detection by using Digital Twin Systems and
Weakly-Supervised Learning [3.0100975935933567]
We present novel weakly-supervised approaches to anomaly detection for industrial settings.
The approaches make use of a Digital Twin to generate a training dataset which simulates the normal operation of the machinery.
The performance of the proposed methods is compared against various state-of-the-art anomaly detection algorithms on an application to a real-world dataset.
arXiv Detail & Related papers (2020-11-12T10:15:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.