論文の概要: Learnable Infinite Taylor Gaussian for Dynamic View Rendering
- arxiv url: http://arxiv.org/abs/2412.04282v1
- Date: Thu, 05 Dec 2024 16:03:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-06 14:40:36.287258
- Title: Learnable Infinite Taylor Gaussian for Dynamic View Rendering
- Title(参考訳): 動的ビューレンダリングのための学習可能な無限Taylor Gaussian
- Authors: Bingbing Hu, Yanyan Li, Rui Xie, Bo Xu, Haoye Dong, Junfeng Yao, Gim Hee Lee,
- Abstract要約: 本稿では,ガウスの時間的進化をモデル化するための学習可能なテイラー式に基づく新しいアプローチを提案する。
提案手法は,本領域における最先端性能を実現する。
- 参考スコア(独自算出の注目度): 55.382017409903305
- License:
- Abstract: Capturing the temporal evolution of Gaussian properties such as position, rotation, and scale is a challenging task due to the vast number of time-varying parameters and the limited photometric data available, which generally results in convergence issues, making it difficult to find an optimal solution. While feeding all inputs into an end-to-end neural network can effectively model complex temporal dynamics, this approach lacks explicit supervision and struggles to generate high-quality transformation fields. On the other hand, using time-conditioned polynomial functions to model Gaussian trajectories and orientations provides a more explicit and interpretable solution, but requires significant handcrafted effort and lacks generalizability across diverse scenes. To overcome these limitations, this paper introduces a novel approach based on a learnable infinite Taylor Formula to model the temporal evolution of Gaussians. This method offers both the flexibility of an implicit network-based approach and the interpretability of explicit polynomial functions, allowing for more robust and generalizable modeling of Gaussian dynamics across various dynamic scenes. Extensive experiments on dynamic novel view rendering tasks are conducted on public datasets, demonstrating that the proposed method achieves state-of-the-art performance in this domain. More information is available on our project page(https://ellisonking.github.io/TaylorGaussian).
- Abstract(参考訳): 位置、回転、スケールなどのガウス的性質の時間的進化を捉えることは、膨大な時間変化パラメータと利用可能な限られた測光データのために難しい課題であり、一般に収束問題を引き起こし、最適解を見つけるのが困難である。
すべての入力をエンドツーエンドのニューラルネットワークに入力することで、複雑な時間的ダイナミクスを効果的にモデル化することができるが、このアプローチには明確な監督が欠如しており、高品質な変換フィールドを生成するのに苦労している。
一方、時間条件多項式関数を用いてガウス軌道と向きをモデル化すると、より明示的で解釈可能な解が得られるが、手作りの努力がかなり必要であり、多様な場面にまたがる一般化性に欠ける。
これらの制限を克服するために,ガウスの時間的進化をモデル化するための学習可能な無限のテイラー式に基づく新しいアプローチを提案する。
この方法は、暗黙的なネットワークベースのアプローチの柔軟性と明示的な多項式関数の解釈可能性の両方を提供し、様々な動的シーンにわたるガウス力学のより堅牢で一般化可能なモデリングを可能にする。
パブリックデータセットを用いて動的新奇なビューレンダリングタスクの大規模な実験を行い,提案手法が最先端の性能を実現することを実証した。
詳細はプロジェクトのページ(https://ellisonking.github.io/TaylorGaussian)で確認できます。
関連論文リスト
- Optimal Transport-Based Displacement Interpolation with Data Augmentation for Reduced Order Modeling of Nonlinear Dynamical Systems [0.0]
本稿では,複雑なシステムにおける非線形力学の表現を強化するために,最適輸送理論と変位を利用した新しいリダクション・オーダー・モデル(ROM)を提案する。
複雑なシステム挙動の予測における精度と効率の向上を示し、計算物理学や工学における幅広い応用の可能性を示している。
論文 参考訳(メタデータ) (2024-11-13T16:29:33Z) - Nonstationary Sparse Spectral Permanental Process [24.10531062895964]
非定常カーネルのスパーススペクトル表現を利用した新しい手法を提案する。
この手法はカーネルタイプと定常性の制約を緩和し、より柔軟なモデリングを可能にする。
合成と実世界の両方のデータセットに対する実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-10-04T16:40:56Z) - Latent variable model for high-dimensional point process with structured missingness [4.451479907610764]
縦断データは医療、社会学、地震学など多くの分野で重要である。
実世界のデータセットは高次元であり、構造化された欠陥パターンを含み、測定時間ポイントは未知のプロセスによって管理される。
これらの制限に対処可能な、柔軟で効率的な潜在変数モデルを提案する。
論文 参考訳(メタデータ) (2024-02-08T15:41:48Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Deep Latent Force Models: ODE-based Process Convolutions for Bayesian
Deep Learning [0.0]
深潜力モデル (DLFM) は、各層に物理インフォームドカーネルを持つ深いガウス過程である。
我々はDLFMの非線形実世界の時系列データに現れるダイナミクスを捉える能力の実証的証拠を提示する。
DLFMは,非物理インフォームド確率モデルに匹敵する性能を達成できることがわかった。
論文 参考訳(メタデータ) (2023-11-24T19:55:57Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Compositional Modeling of Nonlinear Dynamical Systems with ODE-based
Random Features [0.0]
この問題に対処するための新しいドメインに依存しないアプローチを提案する。
我々は、通常の微分方程式から導かれる物理インフォームド・ランダムな特徴の合成を用いる。
提案手法は,ベンチマーク回帰タスクにおいて,他の多くの確率モデルに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2021-06-10T17:55:13Z) - Learning High-Dimensional Distributions with Latent Neural Fokker-Planck
Kernels [67.81799703916563]
低次元潜在空間におけるフォッカー・プランク方程式の解法として問題を定式化する新しい手法を導入する。
提案モデルでは,潜在分散モーフィング,ジェネレータ,パラメータ化Fokker-Planckカーネル関数からなる。
論文 参考訳(メタデータ) (2021-05-10T17:42:01Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。