KNN-MMD: Cross Domain Wireless Sensing via Local Distribution Alignment
- URL: http://arxiv.org/abs/2412.04783v2
- Date: Tue, 07 Jan 2025 08:23:43 GMT
- Title: KNN-MMD: Cross Domain Wireless Sensing via Local Distribution Alignment
- Authors: Zijian Zhao, Zhijie Cai, Tingwei Chen, Xiaoyang Li, Hang Li, Qimei Chen, Guangxu Zhu,
- Abstract summary: We propose K-Nearest Maximum Neighbors Mean Discrepancy (KNN-MMD) for cross-domain wireless sensing.
Our approach begins by constructing a help set using KNN from the target domain, enabling local alignment between the source and target domains.
We also address a key instability issue commonly observed in cross-domain methods, where model performance fluctuates sharply between epochs.
- Score: 17.33355763750407
- License:
- Abstract: Wireless sensing has recently found widespread applications in diverse environments, including homes, offices, and public spaces. By analyzing patterns in channel state information (CSI), it is possible to infer human actions for tasks such as person identification, gesture recognition, and fall detection. However, CSI is highly sensitive to environmental changes, where even minor alterations can significantly distort the CSI patterns. This sensitivity often leads to performance degradation or outright failure when applying wireless sensing models trained in one environment to another. To address this challenge, Domain Alignment (DAL) has been widely adopted for cross-domain classification tasks, as it focuses on aligning the global distributions of the source and target domains in feature space. Despite its popularity, DAL often neglects inter-category relationships, which can lead to misalignment between categories across domains, even when global alignment is achieved. To overcome these limitations, we propose K-Nearest Neighbors Maximum Mean Discrepancy (KNN-MMD), a novel few-shot method for cross-domain wireless sensing. Our approach begins by constructing a help set using KNN from the target domain, enabling local alignment between the source and target domains within each category using MMD. Additionally, we address a key instability issue commonly observed in cross-domain methods, where model performance fluctuates sharply between epochs. Further, most existing methods struggle to determine an optimal stopping point during training due to the absence of labeled data from the target domain. Our method resolves this by excluding the support set from the target domain during training and employing it as a validation set to determine the stopping criterion.
Related papers
- Overcoming Negative Transfer by Online Selection: Distant Domain Adaptation for Fault Diagnosis [42.85741244467877]
The term distant domain adaptation problem' describes the challenge of adapting from a labeled source domain to a significantly disparate unlabeled target domain.
This problem exhibits the risk of negative transfer, where extraneous knowledge from the source domain adversely affects the target domain performance.
In response to this challenge, we propose a novel Online Selective Adversarial Alignment (OSAA) approach.
arXiv Detail & Related papers (2024-05-25T07:17:47Z) - Domain Adaptive Few-Shot Open-Set Learning [36.39622440120531]
We propose Domain Adaptive Few-Shot Open Set Recognition (DA-FSOS) and introduce a meta-learning-based architecture named DAFOSNET.
Our training approach ensures that DAFOS-NET can generalize well to new scenarios in the target domain.
We present three benchmarks for DA-FSOS based on the Office-Home, mini-ImageNet/CUB, and DomainNet datasets.
arXiv Detail & Related papers (2023-09-22T12:04:47Z) - Unsupervised Domain Adaptation for Anatomical Landmark Detection [5.070344284426738]
We propose a novel framework for anatomical landmark detection under the setting of unsupervised domain adaptation (UDA)
The framework leverages self-training and domain adversarial learning to address the domain gap during adaptation.
Our experiments on cephalometric and lung landmark detection show the effectiveness of the method, which reduces the domain gap by a large margin and outperforms other UDA methods consistently.
arXiv Detail & Related papers (2023-08-25T10:22:13Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
We design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module.
By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.
arXiv Detail & Related papers (2022-01-06T05:43:01Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain.
We build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets.
arXiv Detail & Related papers (2021-06-10T06:32:30Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Unsupervised Cross-domain Image Classification by Distance Metric Guided
Feature Alignment [11.74643883335152]
Unsupervised domain adaptation is a promising avenue which transfers knowledge from a source domain to a target domain.
We propose distance metric guided feature alignment (MetFA) to extract discriminative as well as domain-invariant features on both source and target domains.
Our model integrates class distribution alignment to transfer semantic knowledge from a source domain to a target domain.
arXiv Detail & Related papers (2020-08-19T13:36:57Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
We propose a Graph-induced Prototype Alignment (GPA) framework to seek for category-level domain alignment.
In addition, in order to alleviate the negative effect of class-imbalance on domain adaptation, we design a Class-reweighted Contrastive Loss.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-03-28T17:46:55Z) - Exploring Categorical Regularization for Domain Adaptive Object
Detection [27.348272177261233]
We propose a categorical regularization framework for domain adaptive object detection.
It can be applied as a plug-and-play component on a series of Adaptive Domain Faster R-CNN methods.
Our method obtains a significant performance gain over original Domain Adaptive Faster R-CNN detectors.
arXiv Detail & Related papers (2020-03-20T08:53:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.