論文の概要: On Process Awareness in Detecting Multi-stage Cyberattacks in Smart Grids
- arxiv url: http://arxiv.org/abs/2412.04902v1
- Date: Fri, 06 Dec 2024 09:59:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:54:52.907768
- Title: On Process Awareness in Detecting Multi-stage Cyberattacks in Smart Grids
- Title(参考訳): スマートグリッドにおける多段階サイバー攻撃検出のプロセス意識について
- Authors: Omer Sen, Yanico Aust, Simon Glomb, Andreas Ulbig,
- Abstract要約: 本研究は,スマートグリッドにおける侵入検出の促進におけるプロセス認識の役割について考察する。
この研究は、IT、OT、ETレイヤをカプセル化した共シミュレーション環境を利用して、サイバー攻撃をモデル化し、機械学習ベースのIDS戦略を評価する。
この結果は、スマートグリッド環境における高度なIDSベンチマークとデジタルツインデータセットのさらなる開発の重要性を浮き彫りにしている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study delves into the role of process awareness in enhancing intrusion detection within Smart Grids, considering the increasing fusion of ICT in power systems and the associated emerging threats. The research harnesses a co-simulation environment, encapsulating IT, OT, and ET layers, to model multi-stage cyberattacks and evaluate machine learning-based IDS strategies. The key observation is that process-aware IDS demonstrate superior detection capabilities, especially in scenarios closely tied to operational processes, as opposed to IT-only IDS. This improvement is notable in distinguishing complex cyber threats from regular IT activities. The findings underscore the significance of further developing sophisticated IDS benchmarks and digital twin datasets in Smart Grid environments, paving the way for more resilient cybersecurity infrastructures.
- Abstract(参考訳): 本研究は、電力系統におけるICTの融合とそれに伴う新興脅威を考慮し、スマートグリッドにおける侵入検知の促進におけるプロセス認識の役割について考察する。
この研究は、IT、OT、ETレイヤをカプセル化した共シミュレーション環境を利用して、多段階のサイバー攻撃をモデル化し、機械学習ベースのIDS戦略を評価する。
重要なのは、ITのみのIDSとは対照的に、特に運用プロセスと密接に結びついたシナリオにおいて、プロセス認識IDSが優れた検出能力を示すことだ。
この改善は、複雑なサイバー脅威と通常のIT活動の区別において顕著である。
この調査結果は、スマートグリッド環境における高度なIDSベンチマークとデジタルツインデータセットのさらなる開発の重要性を強調し、よりレジリエントなサイバーセキュリティインフラストラクチャへの道を開いた。
関連論文リスト
- Hybrid Machine Learning Models for Intrusion Detection in IoT: Leveraging a Real-World IoT Dataset [0.0]
これらの脅威を緩和するためには、侵入検知システム(IDS)が不可欠である。
機械学習(ML)の最近の進歩は、改善のための有望な道を提供する。
本研究は、いくつかのスタンドアロンMLモデルを組み合わせたハイブリッドアプローチを探求する。
論文 参考訳(メタデータ) (2025-02-17T23:41:10Z) - Machine Learning-Based Intrusion Detection and Prevention System for IIoT Smart Metering Networks: Challenges and Solutions [0.0]
本稿では、IIoTベースのスマート計測ネットワークの安全性に関する課題について考察する。
エッジデバイスを保護するための機械学習ベースの侵入検知システム(IDPS)を提案する。
論文 参考訳(メタデータ) (2025-02-16T14:08:59Z) - Federated Learning-Driven Cybersecurity Framework for IoT Networks with Privacy-Preserving and Real-Time Threat Detection Capabilities [0.0]
従来の集中型セキュリティ手法は、IoTネットワークにおけるプライバシ保護とリアルタイム脅威検出のバランスをとるのに苦労することが多い。
本研究では,IoT環境に特化したフェデレート学習駆動型サイバーセキュリティフレームワークを提案する。
局所的に訓練されたモデルのセキュアアグリゲーションは、同型暗号を用いて達成され、機密情報を漏らさずに協調学習が可能である。
論文 参考訳(メタデータ) (2025-02-14T23:11:51Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
HSI(Deep Learning-based Hyperspectral Image)は、HSI(Hyperspectral Image)とMSI(Multispectral Image)を深層ニューラルネットワーク(DNN)に融合させることにより、高空間分解能HSI(HR-HSI)を生成することを目的としている。
本稿では, HSI-MSI 融合のためのデータ多様性を向上するために, HSI-MSI サンプルペアの自動最適化と拡張を行う新しい逆自動データ拡張フレームワーク ADASR を提案する。
論文 参考訳(メタデータ) (2023-10-11T07:30:37Z) - Task-Oriented Integrated Sensing, Computation and Communication for
Wireless Edge AI [46.61358701676358]
エッジ人工知能(AI)は、従来のクラウドをネットワークエッジまで高速に計算するために提案されている。
近年,特定のエッジAIタスクに対する無線センシング,計算,通信(SC$2$)の収束が,パラダイムシフトを引き起こしている。
超信頼性で低レイテンシなエッジインテリジェンス獲得を実現するために、完全に統合されたセンシング、計算、通信(I SCC)を進めることが最重要である。
論文 参考訳(メタデータ) (2023-06-11T06:40:51Z) - False Data Injection Threats in Active Distribution Systems: A
Comprehensive Survey [1.9084046244608193]
いくつかの最先端技術の統合により、セキュリティとプライバシの脆弱性がいくつか導入されている。
最近の研究動向は、False Data Injection(FDI)攻撃がスマートグリッドパラダイム全体で最も悪意のあるサイバー脅威の1つになっていることを示している。
論文 参考訳(メタデータ) (2021-11-28T22:25:15Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
人工知能(AI)は、さまざまなモノのインターネット(IoT)アプリケーションやサービスにおいて大きなブレークスルーを目の当たりにした。
これは、感覚データへの容易なアクセスと、リアルタイムデータストリームのゼッタバイト(ZB)を生成する広帯域/ユビキタスデバイスの巨大なスケールによって駆動される。
広範コンピューティングと人工知能の合流により、Pervasive AIはユビキタスIoTシステムの役割を拡大した。
論文 参考訳(メタデータ) (2021-05-04T23:42:06Z) - A System for Automated Open-Source Threat Intelligence Gathering and
Management [53.65687495231605]
SecurityKGはOSCTIの収集と管理を自動化するシステムである。
AIとNLP技術を組み合わせて、脅威行動に関する高忠実な知識を抽出する。
論文 参考訳(メタデータ) (2021-01-19T18:31:35Z) - A Comparative Study of AI-based Intrusion Detection Techniques in
Critical Infrastructures [4.8041243535151645]
本稿では,重要なアプリケーションを追跡する無線接続型センサに対するAI駆動の侵入検知システムについて比較検討する。
具体的には、収集したトラフィックの侵入行動を認識するために、機械学習、深層学習、強化学習ソリューションの使用について、詳細な分析を行う。
その結果、Adaptively SupervisedおよびClustered Hybrid IDS、Boltzmann MachineベースのClustered IDS、Q-learningベースのIDSの3つの異なるIDSのパフォーマンス指標が示された。
論文 参考訳(メタデータ) (2020-07-24T20:55:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。