論文の概要: Noise Matters: Diffusion Model-based Urban Mobility Generation with Collaborative Noise Priors
- arxiv url: http://arxiv.org/abs/2412.05000v1
- Date: Fri, 06 Dec 2024 12:52:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:55:36.920106
- Title: Noise Matters: Diffusion Model-based Urban Mobility Generation with Collaborative Noise Priors
- Title(参考訳): 騒音--拡散モデルに基づく協調騒音を用いた都市モビリティ生成-
- Authors: Yuheng Zhang, Yuan Yuan, Jingtao Ding, Jian Yuan, Yong Li,
- Abstract要約: 現実世界のモビリティデータは費用がかかり、プライバシーの懸念が高まる。
拡散モデルの最近の進歩は、移動軌道生成に大きな可能性を示している。
本研究では,コラボレーティブノイズを前提とした都市移動環境の拡散手法であるCoMobを提案する。
- 参考スコア(独自算出の注目度): 17.77624029197469
- License:
- Abstract: With global urbanization, the focus on sustainable cities has largely grown, driving research into equity, resilience, and urban planning, which often relies on mobility data. The rise of web-based apps and mobile devices has provided valuable user data for mobility-related research. However, real-world mobility data is costly and raises privacy concerns. To protect privacy while retaining key features of real-world movement, the demand for synthetic data has steadily increased. Recent advances in diffusion models have shown great potential for mobility trajectory generation due to their ability to model randomness and uncertainty. However, existing approaches often directly apply identically distributed (i.i.d.) noise sampling from image generation techniques, which fail to account for the spatiotemporal correlations and social interactions that shape urban mobility patterns. In this paper, we propose CoDiffMob, a diffusion method for urban mobility generation with collaborative noise priors, we emphasize the critical role of noise in diffusion models for generating mobility data. By leveraging both individual movement characteristics and population-wide dynamics, we construct novel collaborative noise priors that provide richer and more informative guidance throughout the generation process. Extensive experiments demonstrate the superiority of our method, with generated data accurately capturing both individual preferences and collective patterns, achieving an improvement of over 32\%. Furthermore, it can effectively replace web-derived mobility data to better support downstream applications, while safeguarding user privacy and fostering a more secure and ethical web. This highlights its tremendous potential for applications in sustainable city-related research.
- Abstract(参考訳): グローバルな都市化によって、持続可能な都市に焦点が当てられ、しばしばモビリティデータに依存する、株式、レジリエンス、都市計画の研究が進められている。
Webベースのアプリやモバイルデバイスの台頭は、モビリティ関連の研究に貴重なユーザデータを提供してきた。
しかし、現実のモビリティデータはコストがかかりプライバシーの懸念が高まる。
現実世界の動きの重要な特徴を維持しながらプライバシーを保護するため、合成データの需要は着実に増加している。
拡散モデルの最近の進歩は、ランダム性や不確実性をモデル化する能力により、移動軌道生成に大きな可能性を示している。
しかし、既存の手法では、画像生成技術からのノイズサンプリングを直接的に適用することが多く、都市移動パターンを形成する時空間的相関や社会的相互作用を考慮できない。
本稿では,コラボレーティブノイズを先行する都市型モビリティ生成の拡散手法であるCoDiffMobを提案し,移動データ生成のための拡散モデルにおけるノイズの重要性を強調した。
個人移動特性と人口動態を両立させることにより、生成過程を通してより豊かでより情報的なガイダンスを提供する新しい協調ノイズ先行を構築できる。
大規模実験により, 個人の嗜好と集団パターンを正確に把握し, 32 %以上の精度向上を実現した。
さらに、Webから派生したモビリティデータを効果的に置き換えて、下流アプリケーションのサポートを改善すると同時に、ユーザのプライバシを保護し、よりセキュアで倫理的なWebを育むことができます。
このことは、持続可能な都市関連研究に応用する大きな可能性を浮き彫りにしている。
関連論文リスト
- Urban Mobility Assessment Using LLMs [19.591156495742922]
本研究は,大規模言語モデル(LLM)を推進し,旅行調査を合成する,革新的なAIベースのアプローチを提案する。
本研究は, 異なるレベルの既存調査データと比較し, 全米各都市圏におけるこのアプローチの有効性について検討した。
論文 参考訳(メタデータ) (2024-08-22T19:17:33Z) - SMA-Hyper: Spatiotemporal Multi-View Fusion Hypergraph Learning for Traffic Accident Prediction [2.807532512532818]
現在のデータ駆動モデルは、しばしばデータ空間と多様な都市データソースの統合に苦しむ。
本稿では,交通事故予測のための動的学習フレームワークを提案する。
これは、高次のクロスリージョン学習を可能にするデュアル適応グラフ学習機構を組み込んでいる。
また、事故データと都市機能の複数のビューを融合させる事前注意機構も採用している。
論文 参考訳(メタデータ) (2024-07-24T21:10:34Z) - Reconsidering utility: unveiling the limitations of synthetic mobility data generation algorithms in real-life scenarios [49.1574468325115]
実世界の応用性の観点から,5つの最先端合成手法の有用性を評価した。
我々は、GPS追跡タクシーのような細粒度都市の動きを符号化するいわゆる旅行データに焦点を当てる。
あるモデルは妥当な時間内にデータを生成することができず、別のモデルはマップマッチングの要件を満たすためにあまりに多くのジャンプを生成する。
論文 参考訳(メタデータ) (2024-07-03T16:08:05Z) - Deep Temporal Deaggregation: Large-Scale Spatio-Temporal Generative Models [5.816964541847194]
本稿では,最新技術よりもパフォーマンスとスケールが大幅に向上する時系列の変圧器に基づく拡散モデルTDDPMを提案する。
これは、いくつかのシーケンス長、標準データセット、評価尺度にまたがる新しい包括的なベンチマークで評価される。
論文 参考訳(メタデータ) (2024-06-18T09:16:11Z) - Deep Activity Model: A Generative Approach for Human Mobility Pattern Synthesis [11.90100976089832]
我々は,人間の移動性モデリングと合成のための新しい生成的深層学習手法を開発した。
オープンソースのデータを使って、アクティビティパターンとロケーショントラジェクトリの両方を組み込む。
モデルはローカルデータで微調整できるため、さまざまな領域にわたるモビリティパターンを正確に表現することができる。
論文 参考訳(メタデータ) (2024-05-24T02:04:10Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Continuous Trajectory Generation Based on Two-Stage GAN [50.55181727145379]
本稿では,道路網上の連続軌道を生成するために,新たな2段階生成対向フレームワークを提案する。
具体的には、A*アルゴリズムの人間の移動性仮説に基づいてジェネレータを構築し、人間の移動性について学習する。
判別器では, 逐次報酬と移動ヤウ報酬を組み合わせることで, 発電機の有効性を高める。
論文 参考訳(メタデータ) (2023-01-16T09:54:02Z) - On Inferring User Socioeconomic Status with Mobility Records [61.0966646857356]
本稿では,DeepSEIと呼ばれる,社会経済に配慮したディープモデルを提案する。
DeepSEIモデルはディープネットワークとリカレントネットワークと呼ばれる2つのネットワークを組み込んでいる。
実際の移動記録データ、POIデータ、住宅価格データについて広範な実験を行う。
論文 参考訳(メタデータ) (2022-11-15T15:07:45Z) - Generating synthetic mobility data for a realistic population with RNNs
to improve utility and privacy [3.3918638314432936]
本稿では, ディープリカレントニューラルネットワーク(RNN)を用いた合成モビリティデータ生成システムを提案する。
本システムは, 個体群分布を入力として, 対応する合成個体群の移動トレースを生成する。
生成したモビリティデータは,個々のレベルでの実際のデータから変化しながら,実際のデータの特徴を保っていることを示す。
論文 参考訳(メタデータ) (2022-01-04T13:58:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。