Towards High-Level Modelling in Automated Planning
- URL: http://arxiv.org/abs/2412.06312v1
- Date: Mon, 09 Dec 2024 09:01:13 GMT
- Title: Towards High-Level Modelling in Automated Planning
- Authors: Carla Davesa Sureda, Joan Espasa Arxer, Ian Miguel, Mateu Villaret Auselle,
- Abstract summary: Unified-Planning is a Python library offering high-level API to specify planning problems and to invoke automated planners.
In this paper, we present an extension of the UP library aimed at enhancing its expressivity for high-level problem modelling.
- Score: 0.36373653017571106
- License:
- Abstract: Planning is a fundamental activity, arising frequently in many contexts, from daily tasks to industrial processes. The planning task consists of selecting a sequence of actions to achieve a specified goal from specified initial conditions. The Planning Domain Definition Language (PDDL) is the leading language used in the field of automated planning to model planning problems. Previous work has highlighted the limitations of PDDL, particularly in terms of its expressivity. Our interest lies in facilitating the handling of complex problems and enhancing the overall capability of automated planning systems. Unified-Planning is a Python library offering high-level API to specify planning problems and to invoke automated planners. In this paper, we present an extension of the UP library aimed at enhancing its expressivity for high-level problem modelling. In particular, we have added an array type, an expression to count booleans, and the allowance for integer parameters in actions. We show how these facilities enable natural high-level models of three classical planning problems.
Related papers
- Introduction to AI Planning [0.0]
The notes begin by introducing the state model and move on to exploring classical planning.
The most extensive section is dedicated to Hierarchical Task Network (HTN) planning.
The lecture notes end with a bonus chapter on the Planning Domain Definition (PDDL) Language.
arXiv Detail & Related papers (2024-12-16T10:38:04Z) - Propose, Assess, Search: Harnessing LLMs for Goal-Oriented Planning in Instructional Videos [48.15438373870542]
VidAssist is an integrated framework designed for zero/few-shot goal-oriented planning in instructional videos.
It employs a breadth-first search algorithm for optimal plan generation.
Experiments demonstrate that VidAssist offers a unified framework for different goal-oriented planning setups.
arXiv Detail & Related papers (2024-09-30T17:57:28Z) - Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
We introduce CodePlan, a framework that generates and follows textcode-form plans -- pseudocode that outlines high-level, structured reasoning processes.
CodePlan effectively captures the rich semantics and control flows inherent to sophisticated reasoning tasks.
It achieves a 25.1% relative improvement compared with directly generating responses.
arXiv Detail & Related papers (2024-09-19T04:13:58Z) - DKPROMPT: Domain Knowledge Prompting Vision-Language Models for Open-World Planning [9.31108717722043]
Vision-language models (VLMs) have been applied to robot task planning problems.
DKPROMPT automates VLM prompting using domain knowledge in PDDL for classical planning in open worlds.
arXiv Detail & Related papers (2024-06-25T15:49:47Z) - AutoGPT+P: Affordance-based Task Planning with Large Language Models [6.848986296339031]
AutoGPT+P is a system that combines an affordance-based scene representation with a planning system.
Our approach achieves a success rate of 98%, surpassing the current 81% success rate of the current state-of-the-art LLM-based planning method SayCan.
arXiv Detail & Related papers (2024-02-16T16:00:50Z) - Automated Process Planning Based on a Semantic Capability Model and SMT [50.76251195257306]
In research of manufacturing systems and autonomous robots, the term capability is used for a machine-interpretable specification of a system function.
We present an approach that combines these two topics: starting from a semantic capability model, an AI planning problem is automatically generated.
arXiv Detail & Related papers (2023-12-14T10:37:34Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
This paper describes Ada, a framework for automatically constructing task-specific planning representations.
Ada interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks.
arXiv Detail & Related papers (2023-12-13T23:35:31Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
Task planning for embodied AI has been one of the most challenging problems.
We propose a task-agnostic method named 'planning as in-painting'
The proposed framework achieves promising performances in various embodied AI tasks.
arXiv Detail & Related papers (2023-12-02T10:07:17Z) - Embodied Task Planning with Large Language Models [86.63533340293361]
We propose a TAsk Planing Agent (TaPA) in embodied tasks for grounded planning with physical scene constraint.
During inference, we discover the objects in the scene by extending open-vocabulary object detectors to multi-view RGB images collected in different achievable locations.
Experimental results show that the generated plan from our TaPA framework can achieve higher success rate than LLaVA and GPT-3.5 by a sizable margin.
arXiv Detail & Related papers (2023-07-04T17:58:25Z) - A Framework for Neurosymbolic Robot Action Planning using Large Language Models [3.0501524254444767]
We present a framework aimed at bridging the gap between symbolic task planning and machine learning approaches.
The rationale is training Large Language Models (LLMs) into a neurosymbolic task planner compatible with the Planning Domain Definition Language (PDDL)
Preliminary results in selected domains show that our method can: (i) solve 95.5% of problems in a test data set of 1,000 samples; (ii) produce plans up to 13.5% shorter than a traditional symbolic planner; (iii) reduce average overall waiting times for a plan availability by up to 61.4%.
arXiv Detail & Related papers (2023-03-01T11:54:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.