論文の概要: Tracking control of latent dynamic systems with application to spacecraft attitude control
- arxiv url: http://arxiv.org/abs/2412.06342v1
- Date: Mon, 09 Dec 2024 09:49:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:52:24.003388
- Title: Tracking control of latent dynamic systems with application to spacecraft attitude control
- Title(参考訳): 潜時力学系の追従制御と宇宙船姿勢制御への応用
- Authors: Congxi Zhang, Yongchun Xie,
- Abstract要約: インテリジェントな宇宙船や宇宙ロボットが複雑な環境でタスクを行う場合、制御可能な変数は直接利用できない。
これらの観測の力学は非常に複雑であるが、それらの背後にあるメカニズムは単純かもしれない。
潜在力学系の制御には、強化学習に基づく手法は、サンプルの非効率性や一般化の問題に悩まされる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: When intelligent spacecraft or space robots perform tasks in a complex environment, the controllable variables are usually not directly available and have to be inferred from high-dimensional observable variables, such as outputs of neural networks or images. While the dynamics of these observations are highly complex, the mechanisms behind them may be simple, which makes it possible to regard them as latent dynamic systems. For control of latent dynamic systems, methods based on reinforcement learning suffer from sample inefficiency and generalization problems. In this work, we propose an asymptotic tracking controller for latent dynamic systems. The latent variables are related to the high-dimensional observations through an unknown nonlinear function. The dynamics are unknown but assumed to be affine nonlinear. To realize asymptotic tracking, an identifiable latent dynamic model is learned to recover the latents and estimate the dynamics. This training process does not depend on the goals or reference trajectories. Based on the learned model, we use a manually designed feedback linearization controller to ensure the asymptotic tracking property of the closed-loop system. After considering fully controllable systems, the results are extended to the case that uncontrollable environmental latents exist. As an application, simulation experiments on a latent spacecraft attitude dynamic model are conducted to verify the proposed methods, and the observation noise and control deviation are taken into consideration.
- Abstract(参考訳): インテリジェントな宇宙船や宇宙ロボットが複雑な環境でタスクを実行する場合、制御可能な変数は直接利用できず、ニューラルネットワークや画像の出力のような高次元の観測可能な変数から推論する必要がある。
これらの観測の力学は非常に複雑であるが、それらの背後にあるメカニズムは単純であり、潜在力学系とみなすことができる。
潜在力学系の制御には、強化学習に基づく手法は、サンプルの非効率性や一般化の問題に悩まされる。
本研究では,潜在動的システムのための漸近的トラッキングコントローラを提案する。
潜伏変数は未知の非線形関数を通して高次元の観測と関連している。
力学は未知であるが、アフィン非線形であると仮定される。
漸近的追跡を実現するために、同定可能な潜伏動的モデルを学習し、潜伏者を回復し、ダイナミクスを推定する。
このトレーニングプロセスは、目標や基準軌跡に依存しない。
学習モデルに基づいて,手動で設計したフィードバック線形化制御器を用いて,閉ループシステムの漸近的追跡特性を保証する。
完全に制御可能なシステムを考えると、制御不能な環境潜水剤が存在する場合まで結果が拡張される。
提案手法を検証するため, 潜水宇宙船の姿勢動的モデルに関するシミュレーション実験を行い, 観測ノイズと制御偏差を考慮に入れた。
関連論文リスト
- Identifiable Representation and Model Learning for Latent Dynamic Systems [0.0]
本稿では,潜在力学系における表現とモデル学習の問題について検討する。
線形およびアフィン非線形潜時力学系にスパース入力行列を持つ場合、潜時変数をスケーリングまで同定できることを証明した。
論文 参考訳(メタデータ) (2024-10-23T13:55:42Z) - Probabilistic Decomposed Linear Dynamical Systems for Robust Discovery of Latent Neural Dynamics [5.841659874892801]
時間変化線形状態空間モデルは、ニューラルネットワークの数学的解釈可能な表現を得るための強力なツールである。
潜在変数推定のための既存の手法は、動的ノイズやシステムの非線形性に対して堅牢ではない。
本稿では,動的雑音に対するロバスト性を改善するために,分解モデルにおける潜在変数推定に対する確率的アプローチを提案する。
論文 参考訳(メタデータ) (2024-08-29T18:58:39Z) - Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - Data-Driven Control with Inherent Lyapunov Stability [3.695480271934742]
本研究では,非線形力学モデルと安定化制御器のパラメトリック表現をデータから共同学習する手法として,インヒーレント・リャプノフ安定度制御(CoILS)を提案する。
新たな構成によって保証される学習力学の安定化性に加えて、学習した制御器は学習力学の忠実性に関する特定の仮定の下で真の力学を安定化することを示す。
論文 参考訳(メタデータ) (2023-03-06T14:21:42Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
本稿では,スケーラブルな機械学習フレームワークである移動水平最適化(DySMHO)による動的システムの発見について紹介する。
DySMHOは、基底関数の大きな辞書から基礎となる支配方程式を逐次学習する。
標準非線形力学系の例は、DySMHOが規則を正確に回復できることを示すために用いられる。
論文 参考訳(メタデータ) (2021-07-30T20:35:03Z) - Learning Continuous System Dynamics from Irregularly-Sampled Partial
Observations [33.63818978256567]
グラフ構造を持つ多エージェント動的システムをモデル化するための潜在常微分方程式生成モデルLG-ODEを提案する。
高次元軌跡の埋め込みと連続潜伏系力学を同時に学習することができる。
我々のモデルは、教師なしの方法で初期状態を推論できるグラフニューラルネットワークによってパラメータ化された新しいエンコーダを採用している。
論文 参考訳(メタデータ) (2020-11-08T01:02:22Z) - Heteroscedastic Uncertainty for Robust Generative Latent Dynamics [7.107159120605662]
本稿では,潜在状態表現と関連するダイナミクスを協調的に学習する手法を提案する。
我々の主な貢献として、我々の表現がヘテロスセダスティックあるいは入力固有の不確実性の概念を捉えることができるかを説明します。
画像に基づく2つのタスクの予測と制御実験の結果を示す。
論文 参考訳(メタデータ) (2020-08-18T21:04:33Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
状態遷移が既知の状態-作用対の特徴埋め込みに線形に依存する非線形力学系のクラスについて検討する。
そこで本稿では, トラジェクティブ・プランニング, トラジェクティブ・トラッキング, システムの再推定という3つのステップを繰り返すことで, この問題を解決するためのアクティブ・ラーニング・アプローチを提案する。
本手法は, 非線形力学系を標準線形回帰の統計速度と同様, パラメトリック速度で推定する。
論文 参考訳(メタデータ) (2020-06-18T04:54:11Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
状態空間全体にわたって安定することが保証される力学系を学習するためのアプローチを提案する。
このような学習システムは、単純な力学系をモデル化することができ、複雑な力学を学習するために追加の深層生成モデルと組み合わせることができることを示す。
論文 参考訳(メタデータ) (2020-01-17T00:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。