When Dimensionality Reduction Meets Graph (Drawing) Theory: Introducing a Common Framework, Challenges and Opportunities
- URL: http://arxiv.org/abs/2412.06555v1
- Date: Mon, 09 Dec 2024 15:03:22 GMT
- Title: When Dimensionality Reduction Meets Graph (Drawing) Theory: Introducing a Common Framework, Challenges and Opportunities
- Authors: Fernando Paulovich, Alessio Arleo, Stef van den Elzen,
- Abstract summary: Dimensionality Reduction and graph analysis are two popular subfields in visualization research.<n>This paper introduces a unifying framework to help bridge the gap between DR and graph (drawing) theory.
- Score: 46.1232919707345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the vast landscape of visualization research, Dimensionality Reduction (DR) and graph analysis are two popular subfields, often essential to most visual data analytics setups. DR aims to create representations to support neighborhood and similarity analysis on complex, large datasets. Graph analysis focuses on identifying the salient topological properties and key actors within networked data, with specialized research on investigating how such features could be presented to the user to ease the comprehension of the underlying structure. Although these two disciplines are typically regarded as disjoint subfields, we argue that both fields share strong similarities and synergies that can potentially benefit both. Therefore, this paper discusses and introduces a unifying framework to help bridge the gap between DR and graph (drawing) theory. Our goal is to use the strongly math-grounded graph theory to improve the overall process of creating DR visual representations. We propose how to break the DR process into well-defined stages, discussing how to match some of the DR state-of-the-art techniques to this framework and presenting ideas on how graph drawing, topology features, and some popular algorithms and strategies used in graph analysis can be employed to improve DR topology extraction, embedding generation, and result validation. We also discuss the challenges and identify opportunities for implementing and using our framework, opening directions for future visualization research.
Related papers
- XGraphRAG: Interactive Visual Analysis for Graph-based Retrieval-Augmented Generation [16.068460356582648]
This research proposes a visual analysis framework that helps RAG developers identify critical recalls of GraphRAG.<n>We develop XGraphRAG, a prototype system incorporating a set of interactive visualizations to facilitate users' analysis process.
arXiv Detail & Related papers (2025-06-10T09:14:30Z) - GraphRAG-Bench: Challenging Domain-Specific Reasoning for Evaluating Graph Retrieval-Augmented Generation [26.654064783342545]
Graph Retrieval Augmented Generation (GraphRAG) has garnered increasing recognition for its potential to enhance large language models (LLMs)<n>Current evaluations of GraphRAG models predominantly rely on traditional question-answering datasets.<n>We introduce GraphRAG-Bench, a large-scale, domain-specific benchmark designed to rigorously evaluate GraphRAG models.
arXiv Detail & Related papers (2025-06-03T03:44:26Z) - Retrieval-Augmented Generation with Graphs (GraphRAG) [84.29507404866257]
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information.
Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information.
Unlike conventional RAG, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains.
arXiv Detail & Related papers (2024-12-31T06:59:35Z) - Towards Graph Prompt Learning: A Survey and Beyond [38.55555996765227]
Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability.
This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications.
arXiv Detail & Related papers (2024-08-26T06:36:42Z) - ChartThinker: A Contextual Chain-of-Thought Approach to Optimized Chart Summarization [32.19963543411396]
This study constructs a large-scale dataset of comprehensive chart-caption pairs and fine-tuning instructions on each chart.
We propose an innovative chart summarization method, ChartThinker, which synthesizes deep analysis based on chains of thought.
Built upon the curated datasets, our trained model consistently exhibits superior performance in chart summarization tasks.
arXiv Detail & Related papers (2024-03-17T14:49:09Z) - Explainable Representations for Relation Prediction in Knowledge Graphs [0.0]
We propose SEEK, a novel approach for explainable representations to support relation prediction in knowledge graphs.
It is based on identifying relevant shared semantic aspects between entities and learning representations for each subgraph.
We evaluate SEEK on two real-world relation prediction tasks: protein-protein interaction prediction and gene-disease association prediction.
arXiv Detail & Related papers (2023-06-22T06:18:40Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
Graph neural networks have emerged as a leading architecture for many graph-level tasks.
graph pooling is indispensable for obtaining a holistic graph-level representation of the whole graph.
arXiv Detail & Related papers (2022-04-15T04:02:06Z) - Hyperbolic Graph Learning: A Comprehensive Review [56.53820115624101]
This survey paper provides a comprehensive review of the rapidly evolving field of Hyperbolic Graph Learning (HGL)<n>We systematically categorize and analyze existing methods dividing them into (1) hyperbolic graph embedding-based techniques, (2) graph neural network-based hyperbolic models, and (3) emerging paradigms.<n>We extensively discuss diverse applications of HGL across multiple domains, including recommender systems, knowledge graphs, bioinformatics, and other relevant scenarios.
arXiv Detail & Related papers (2022-02-28T15:08:48Z) - Graph Collaborative Reasoning [18.45161138837384]
Graph Collaborative Reasoning (GCR) can use the neighbor link information for relational reasoning on graphs from logical reasoning perspectives.
We provide a simple approach to translate a graph structure into logical expressions, so that the link prediction task can be converted into a neural logic reasoning problem.
To show the effectiveness of our work, we conduct experiments on graph-related tasks such as link prediction and recommendation based on commonly used benchmark datasets.
arXiv Detail & Related papers (2021-12-27T14:27:58Z) - Group Contrastive Self-Supervised Learning on Graphs [101.45974132613293]
We study self-supervised learning on graphs using contrastive methods.
We argue that contrasting graphs in multiple subspaces enables graph encoders to capture more abundant characteristics.
arXiv Detail & Related papers (2021-07-20T22:09:21Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - Quantifying Challenges in the Application of Graph Representation
Learning [0.0]
We provide an application oriented perspective to a set of popular embedding approaches.
We evaluate their representational power with respect to real-world graph properties.
Our results suggest that "one-to-fit-all" GRL approaches are hard to define in real-world scenarios.
arXiv Detail & Related papers (2020-06-18T03:19:43Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.