Conformal Uncertainty Quantification of Electricity Price Predictions for Risk-Averse Storage Arbitrage
- URL: http://arxiv.org/abs/2412.07075v1
- Date: Tue, 10 Dec 2024 00:31:15 GMT
- Title: Conformal Uncertainty Quantification of Electricity Price Predictions for Risk-Averse Storage Arbitrage
- Authors: Saud Alghumayjan, Ming Yi, Bolun Xu,
- Abstract summary: This paper proposes a risk-averse approach to energy storage price arbitrage, leveraging conformal uncertainty quantification for electricity price predictions.
The framework comprises a two-layer prediction model to quantify real-time price uncertainty confidence intervals with high coverage.
Using historical data from New York State and synthetic price predictions, our evaluations demonstrate that this framework can achieve good profit margins with less than $35%$ purchases.
- Score: 0.0
- License:
- Abstract: This paper proposes a risk-averse approach to energy storage price arbitrage, leveraging conformal uncertainty quantification for electricity price predictions. The method addresses the significant challenges posed by the inherent volatility and uncertainty of real-time electricity prices, which create substantial risks of financial losses for energy storage participants relying on future price forecasts to plan their operations. The framework comprises a two-layer prediction model to quantify real-time price uncertainty confidence intervals with high coverage. The framework is distribution-free and can work with any underlying point prediction model. We evaluate the quantification effectiveness through storage price arbitrage application by managing the risk of participating in the real-time market. We design a risk-averse policy for profit-maximization of energy storage arbitrage to find the safest storage schedule with very minimal losses. Using historical data from New York State and synthetic price predictions, our evaluations demonstrate that this framework can achieve good profit margins with less than $35\%$ purchases.
Related papers
- Conformal Prediction for Electricity Price Forecasting in the Day-Ahead and Real-Time Balancing Market [0.0]
integration of renewable energy into electricity markets poses significant challenges to price stability.
This study explores the enhancement of probabilistic price prediction using Conformal Prediction (CP) techniques.
We propose an ensemble approach that combines the efficiency of quantile regression models with the robust coverage properties of time series adapted CP techniques.
arXiv Detail & Related papers (2025-02-07T13:57:47Z) - Deep Learning-Based Electricity Price Forecast for Virtual Bidding in Wholesale Electricity Market [3.130428666578115]
This study presents a Transformer-based deep learning model to forecast the price spread between real-time and day-ahead electricity prices in the ERCOT (Electric Reliability Council of Texas) market.
The proposed model is trained under realistic constraints and validated using a walk-forward approach by updating the model every week.
The results show that the strategy of trading only at the peak hour with a precision score of over 50% produces nearly consistent profit over the test period.
arXiv Detail & Related papers (2024-11-25T20:04:16Z) - Conformal Prediction for Stochastic Decision-Making of PV Power in Electricity Markets [0.0]
conformal prediction (CP) is an emerging probabilistic forecasting method for day-ahead photovoltaic power predictions.
Using CP in combination with certain bidding strategies can yield high profit with minimal energy imbalance.
In concrete, using conformal predictive systems with k-nearest neighbors and Mondrian binning after random forest regression yields the best profit.
arXiv Detail & Related papers (2024-03-29T12:34:57Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Price-Aware Deep Learning for Electricity Markets [58.3214356145985]
We propose to embed electricity market-clearing optimization as a deep learning layer.
Differentiating through this layer allows for balancing between prediction and pricing errors.
We showcase the price-aware deep learning in the nexus of wind power forecasting and short-term electricity market clearing.
arXiv Detail & Related papers (2023-08-02T21:16:05Z) - Measuring tail risk at high-frequency: An $L_1$-regularized extreme
value regression approach with unit-root predictors [6.603123437390905]
We study tail risk dynamics in high-frequency financial markets and their connection with trading activity and market uncertainty.
We introduce a dynamic extreme value regression model accommodating both stationary and local unit-root predictors.
We find the severity of extreme losses to be well predicted by low levels of price impact in period of high volatility of liquidity and volatility.
arXiv Detail & Related papers (2023-01-03T21:31:00Z) - Probabilistic forecasting of German electricity imbalance prices [0.0]
The exponential growth of renewable energy capacity has brought much uncertainty to electricity prices and to electricity generation.
For an energy trader participating in both markets, the forecasting of imbalance prices is of particular interest.
The forecasting is performed 30 minutes before the delivery, so that the trader might still choose the trading place.
arXiv Detail & Related papers (2022-05-23T16:32:20Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z) - The impact of online machine-learning methods on long-term investment
decisions and generator utilization in electricity markets [69.68068088508505]
We investigate the impact of eleven offline and five online learning algorithms to predict the electricity demand profile over the next 24h.
We show we can reduce the mean absolute error by 30% using an online algorithm when compared to the best offline algorithm.
We also show that large errors in prediction accuracy have a disproportionate error on investments made over a 17-year time frame.
arXiv Detail & Related papers (2021-03-07T11:28:54Z) - REST: Relational Event-driven Stock Trend Forecasting [76.08435590771357]
We propose a relational event-driven stock trend forecasting (REST) framework, which can address the shortcoming of existing methods.
To remedy the first shortcoming, we propose to model the stock context and learn the effect of event information on the stocks under different contexts.
To address the second shortcoming, we construct a stock graph and design a new propagation layer to propagate the effect of event information from related stocks.
arXiv Detail & Related papers (2021-02-15T07:22:09Z) - A Deep Reinforcement Learning Framework for Continuous Intraday Market
Bidding [69.37299910149981]
A key component for the successful renewable energy sources integration is the usage of energy storage.
We propose a novel modelling framework for the strategic participation of energy storage in the European continuous intraday market.
An distributed version of the fitted Q algorithm is chosen for solving this problem due to its sample efficiency.
Results indicate that the agent converges to a policy that achieves in average higher total revenues than the benchmark strategy.
arXiv Detail & Related papers (2020-04-13T13:50:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.