論文の概要: Tazza: Shuffling Neural Network Parameters for Secure and Private Federated Learning
- arxiv url: http://arxiv.org/abs/2412.07454v1
- Date: Tue, 10 Dec 2024 12:20:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:38:37.733210
- Title: Tazza: Shuffling Neural Network Parameters for Secure and Private Federated Learning
- Title(参考訳): Tazza: セキュアでプライベートなフェデレーション学習のためのニューラルネットワークパラメータのシャッフル
- Authors: Kichang Lee, Jaeho Jin, JaeYeon Park, JeongGil Ko,
- Abstract要約: フェデレーション学習は、生データを共有せず、データのプライバシを保存することなく、分散モデルトレーニングを可能にする。
既存のソリューションはしばしばこれらの問題に別々に対処し、システムの堅牢性やモデルの精度を犠牲にする。
この作業では、両課題に同時に対処するセキュアで効率的なフェデレーション学習フレームワークであるTazzaが導入されている。
- 参考スコア(独自算出の注目度): 3.987352341101438
- License:
- Abstract: Federated learning enables decentralized model training without sharing raw data, preserving data privacy. However, its vulnerability towards critical security threats, such as gradient inversion and model poisoning by malicious clients, remain unresolved. Existing solutions often address these issues separately, sacrificing either system robustness or model accuracy. This work introduces Tazza, a secure and efficient federated learning framework that simultaneously addresses both challenges. By leveraging the permutation equivariance and invariance properties of neural networks via weight shuffling and shuffled model validation, Tazza enhances resilience against diverse poisoning attacks, while ensuring data confidentiality and high model accuracy. Comprehensive evaluations on various datasets and embedded platforms show that Tazza achieves robust defense with up to 6.7x improved computational efficiency compared to alternative schemes, without compromising performance.
- Abstract(参考訳): フェデレーション学習は、生データを共有せず、データのプライバシを保存することなく、分散モデルトレーニングを可能にする。
しかし、勾配の反転や悪意のあるクライアントによるモデル中毒などの重要なセキュリティ脅威に対する脆弱性は未解決のままである。
既存のソリューションはしばしばこれらの問題に別々に対処し、システムの堅牢性やモデルの精度を犠牲にする。
この作業では、両課題に同時に対処するセキュアで効率的なフェデレーション学習フレームワークであるTazzaが導入されている。
Tazzaは、重みのシャッフルとシャッフルモデルバリデーションを通じて、ニューラルネットワークの置換等価性と不変性を活用することにより、データの機密性と高いモデルの精度を確保しながら、多様な中毒攻撃に対するレジリエンスを高める。
様々なデータセットや組込みプラットフォームに関する総合的な評価から、Tazzaはパフォーマンスを損なうことなく、計算効率を最大6.7倍改善した。
関連論文リスト
- Complete Security and Privacy for AI Inference in Decentralized Systems [14.526663289437584]
大規模なモデルは病気の診断のようなタスクには不可欠ですが、繊細でスケーラビリティに欠ける傾向があります。
Nesaはこれらの課題を、複数のテクニックを使って包括的なフレームワークで解決し、データとモデル出力を保護する。
ネサの最先端の証明と原則は、このフレームワークの有効性を実証している。
論文 参考訳(メタデータ) (2024-07-28T05:09:17Z) - Reliable Feature Selection for Adversarially Robust Cyber-Attack Detection [0.0]
この研究は、複数のメソッドを組み合わせて複数のネットワークデータセットに適用する機能選択とコンセンサスプロセスを示す。
データ多様性が向上し、最高の時間関連機能とより具体的な機能セットを選択し、敵のトレーニングを実行することで、MLモデルはより逆向きに堅牢な一般化を実現することができた。
論文 参考訳(メタデータ) (2024-04-05T16:01:21Z) - Precision Guided Approach to Mitigate Data Poisoning Attacks in Federated Learning [4.907460152017894]
フェデレートラーニング(Federated Learning, FL)は、参加者が共有機械学習モデルを集合的にトレーニングすることを可能にする、協調学習パラダイムである。
データ中毒攻撃に対する現在のFL防衛戦略は、正確性と堅牢性の間のトレードオフを含む。
本稿では、FLにおけるデータ中毒攻撃を効果的に対処するために、ゾーンベースの退避更新(ZBDU)機構を利用するFedZZを提案する。
論文 参考訳(メタデータ) (2024-04-05T14:37:49Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Adversarial training with informed data selection [53.19381941131439]
アドリアリトレーニングは、これらの悪意のある攻撃からネットワークを守るための最も効率的なソリューションである。
本研究では,ミニバッチ学習に適用すべきデータ選択戦略を提案する。
シミュレーションの結果,ロバスト性および標準精度に関して良好な妥協が得られることがわかった。
論文 参考訳(メタデータ) (2023-01-07T12:09:50Z) - FedCC: Robust Federated Learning against Model Poisoning Attacks [0.0]
フェデレートラーニング(Federated Learning)は、学習モデルにおけるプライバシの問題に対処するように設計されている。
新しい分散パラダイムは、データのプライバシを保護するが、サーバがローカルデータセットにアクセスできないため、攻撃面を区別する。
論文 参考訳(メタデータ) (2022-12-05T01:52:32Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Federated Learning in Adversarial Settings [0.8701566919381224]
フェデレートされた学習スキームは、堅牢性、プライバシ、帯域幅効率、モデルの精度の異なるトレードオフを提供します。
この拡張は、厳格なプライバシー要件があっても、プライベートではないがロバストなスキームと同じくらい効率的に機能することを示す。
これは差別化プライバシとロバストネスの基本的なトレードオフの可能性を示している。
論文 参考訳(メタデータ) (2020-10-15T14:57:02Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - Triple Wins: Boosting Accuracy, Robustness and Efficiency Together by
Enabling Input-Adaptive Inference [119.19779637025444]
深層ネットワークは、(クリーンな自然画像の場合)正確さと(敵対的な摂動画像の場合)頑健さの相違に直面することを最近提案された。
本稿では,入力適応推論に関連するマルチエグジットネットワークについて検討し,モデル精度,ロバスト性,効率の最適化において「スイートポイント」を達成する上での強い期待を示す。
論文 参考訳(メタデータ) (2020-02-24T00:40:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。