論文の概要: Agents for self-driving laboratories applied to quantum computing
- arxiv url: http://arxiv.org/abs/2412.07978v1
- Date: Tue, 10 Dec 2024 23:30:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 23:20:26.496378
- Title: Agents for self-driving laboratories applied to quantum computing
- Title(参考訳): 量子コンピューティングに応用した自律型実験室のエージェント
- Authors: Shuxiang Cao, Zijian Zhang, Mohammed Alghadeer, Simone D Fasciati, Michele Piscitelli, Mustafa Bakr, Peter Leek, Alán Aspuru-Guzik,
- Abstract要約: 本稿では,実験者の実験知識の組織化とエージェントによる実験の自動化を支援するため,k-agentsフレームワークを提案する。
本フレームワークでは,実験結果の分析方法を含む実験室の知識をカプセル化するために,大規模言語モデルに基づくエージェントを用いている。
実験を自動化するために,複数ステップの実験手順をステートマシンに分割し,他のエージェントと対話して各ステップの実行を行い,実験結果を解析する実行エージェントを導入する。
- 参考スコア(独自算出の注目度): 2.840384720502993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fully automated self-driving laboratories are promising to enable high-throughput and large-scale scientific discovery by reducing repetitive labour. However, effective automation requires deep integration of laboratory knowledge, which is often unstructured, multimodal, and difficult to incorporate into current AI systems. This paper introduces the k-agents framework, designed to support experimentalists in organizing laboratory knowledge and automating experiments with agents. Our framework employs large language model-based agents to encapsulate laboratory knowledge including available laboratory operations and methods for analyzing experiment results. To automate experiments, we introduce execution agents that break multi-step experimental procedures into state machines, interact with other agents to execute each step and analyze the experiment results. The analyzed results are then utilized to drive state transitions, enabling closed-loop feedback control. To demonstrate its capabilities, we applied the agents to calibrate and operate a superconducting quantum processor, where they autonomously planned and executed experiments for hours, successfully producing and characterizing entangled quantum states at the level achieved by human scientists. Our knowledge-based agent system opens up new possibilities for managing laboratory knowledge and accelerating scientific discovery.
- Abstract(参考訳): 完全に自動化された自動運転車研究所は、反復労働を減らすことで、高速で大規模な科学的発見を可能にすることを約束している。
しかし、効果的な自動化には、しばしば非構造化され、マルチモーダルで、現在のAIシステムに組み込むのが難しい実験室の知識の深い統合が必要である。
本稿では,実験者の実験知識の組織化とエージェントによる実験の自動化を支援するため,k-agentsフレームワークを提案する。
本フレームワークでは,実験結果の分析方法を含む実験室の知識をカプセル化するために,大規模言語モデルに基づくエージェントを用いている。
実験を自動化するために,複数ステップの実験手順をステートマシンに分割し,他のエージェントと対話して各ステップの実行を行い,実験結果を解析する実行エージェントを導入する。
分析結果を用いて状態遷移を駆動し、クローズドループフィードバック制御を可能にする。
その能力を実証するため,超伝導量子プロセッサのキャリブレーションと動作にエージェントを応用し,自律的に何時間も実験を計画・実行し,人間科学者が達成したレベルにおける絡み合った量子状態の生成と特徴付けに成功した。
我々の知識に基づくエージェントシステムは、実験室の知識を管理し、科学的な発見を加速する新しい可能性を開く。
関連論文リスト
- Accelerating drug discovery with Artificial: a whole-lab orchestration and scheduling system for self-driving labs [0.0]
自動運転ラボは、自動化されたAI誘導の実験を可能にすることで、薬物発見を変革している。
しかし、複雑なオーケストレーション、さまざまな楽器とAIモデルの統合、データの効率的な管理といった課題に直面している。
人工知能は、包括的なオーケストレーションとスケジューリングシステムでこれらの問題に対処する。
ラボの操作を統一し、自動化し、AIによる意思決定を統合する。
論文 参考訳(メタデータ) (2025-04-01T17:22:50Z) - Scaling Laws in Scientific Discovery with AI and Robot Scientists [72.3420699173245]
自律的なジェネラリスト科学者(AGS)の概念は、エージェントAIとエンボディロボットを組み合わせて、研究ライフサイクル全体を自動化している。
AGSは科学的発見に必要な時間と資源を大幅に削減することを目指している。
これらの自律的なシステムが研究プロセスにますます統合されるにつれて、科学的な発見が新しいスケーリング法則に従うかもしれないという仮説を立てる。
論文 参考訳(メタデータ) (2025-03-28T14:00:27Z) - Autonomous Microscopy Experiments through Large Language Model Agents [4.241267255764773]
大規模言語モデル(LLM)は、材料研究のための自動運転研究所(SDL)の開発を加速させた。
本稿では,原子間力顕微鏡(AFM)を自動化するフレームワークであるAILA(Artificially Intelligent Lab Assistant)を紹介する。
我々の体系的な評価は、最先端の言語モデルがドキュメント検索のような基本的なタスクに悩まされていることを示している。
論文 参考訳(メタデータ) (2024-12-18T09:35:28Z) - AutoSciLab: A Self-Driving Laboratory For Interpretable Scientific Discovery [1.1740681158785793]
AutoSciLabは、自律的な科学実験を駆動するための機械学習フレームワークである。
これは高次元空間における科学的発見を目的とした代理研究者を形成する。
オープンエンドなナノフォトニクスの課題に私たちのフレームワークを適用することで、AutoSciLabは、非コヒーレント発光を誘導する根本的に新しい方法を発見しました。
論文 参考訳(メタデータ) (2024-12-16T20:41:46Z) - Many Heads Are Better Than One: Improved Scientific Idea Generation by A LLM-Based Multi-Agent System [62.832818186789545]
Virtual Scientists (VirSci) は、科学研究に固有のチームワークを模倣するために設計されたマルチエージェントシステムである。
VirSciは研究のアイデアを共同で生成し、評価し、洗練するエージェントのチームを組織している。
このマルチエージェントアプローチは、新しい科学的アイデアを生み出す上で、最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-12T07:16:22Z) - Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition [48.65867987106428]
本稿では,人間とロボットの協調学習システムについて紹介する。
これにより、ロボットエンドエフェクターの制御を学習支援エージェントと共有することができる。
これにより、ダウンストリームタスクにおいて、収集されたデータが十分な品質であることを保証しながら、人間の適応の必要性を減らすことができる。
論文 参考訳(メタデータ) (2024-06-29T03:37:29Z) - AlabOS: A Python-based Reconfigurable Workflow Management Framework for Autonomous Laboratories [3.8330070166920556]
実験のオーケストレーションとリソース管理のための汎用ソフトウェアフレームワークであるAlabOSを紹介する。
AlabOSは再構成可能な実験ワークフローモデルとリソース予約機構を備えており、様々なタスクの同時実行を可能にする。
1.5年間に約3,500のサンプルを合成したA-Labの試作実験室で,AlabOSの実装を実演した。
論文 参考訳(メタデータ) (2024-05-22T18:59:39Z) - Empowering Biomedical Discovery with AI Agents [15.125735219811268]
我々は「AI科学者」を懐疑的な学習と推論が可能なシステムとして想定する。
バイオメディカルAIエージェントは、人間の創造性と専門知識と、大規模なデータセットを分析するAIの能力を組み合わせる。
AIエージェントは、仮想細胞シミュレーション、プログラム可能な表現型の制御、細胞回路の設計、新しい治療法の開発など、幅広い領域に影響を与える可能性がある。
論文 参考訳(メタデータ) (2024-04-03T16:08:01Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [55.30328162764292]
Chemist-Xは、化学合成における反応条件最適化(RCO)タスクを自動化する包括的なAIエージェントである。
このエージェントは、検索強化世代(RAG)技術とAI制御のウェットラブ実験を実行する。
我々の自動ウェットラブ実験の結果は、LLMが制御するエンドツーエンドの操作を、ロボットに人間がいない状態で行うことで達成され、Chemist-Xの自動運転実験における能力が証明された。
論文 参考訳(メタデータ) (2023-11-16T01:21:33Z) - ProAgent: From Robotic Process Automation to Agentic Process Automation [87.0555252338361]
LLM(Large Language Models)は、人間のような知性を持つ言語である。
本稿では,ALMをベースとしたエージェントを用いた高度な自動化のための基盤的自動化パラダイムであるエージェントプロセス自動化(APA)を紹介する。
そして、人間の指示を駆使し、特殊エージェントの調整によって複雑な決定を下すように設計されたエージェントであるProAgentをインスタンス化する。
論文 参考訳(メタデータ) (2023-11-02T14:32:16Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - An Automated Scanning Transmission Electron Microscope Guided by Sparse
Data Analytics [0.0]
本稿では,新たに出現するスパースデータ分析によって導かれる閉ループ管楽器制御プラットフォームの設計について論じる。
機械学習によって通知される集中型コントローラが、限られた$a$$priori$知識とタスクベースの識別を組み合わせることで、オンザフライでの実験的な意思決定を駆動する様子を実証する。
論文 参考訳(メタデータ) (2021-09-30T00:25:35Z) - Automated and Autonomous Experiment in Electron and Scanning Probe
Microscopy [0.0]
連続画像形成機構を有するイメージング手法における自動実験(AE)への主要な経路の解析を目指しています。
自動実験は一般分野の知識のより広い文脈で議論されるべきであり、実験の結果、双方が実験を通知し、増大させる。
論文 参考訳(メタデータ) (2021-03-22T20:24:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。