論文の概要: Agents for self-driving laboratories applied to quantum computing
- arxiv url: http://arxiv.org/abs/2412.07978v1
- Date: Tue, 10 Dec 2024 23:30:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:03:50.906541
- Title: Agents for self-driving laboratories applied to quantum computing
- Title(参考訳): 量子コンピューティングに応用した自律型実験室のエージェント
- Authors: Shuxiang Cao, Zijian Zhang, Mohammed Alghadeer, Simone D Fasciati, Michele Piscitelli, Mustafa Bakr, Peter Leek, Alán Aspuru-Guzik,
- Abstract要約: 本稿では,実験者の実験知識の組織化とエージェントによる実験の自動化を支援するため,k-agentsフレームワークを提案する。
本フレームワークでは,実験結果の分析方法を含む実験室の知識をカプセル化するために,大規模言語モデルに基づくエージェントを用いている。
実験を自動化するために,複数ステップの実験手順をステートマシンに分割し,他のエージェントと対話して各ステップの実行を行い,実験結果を解析する実行エージェントを導入する。
- 参考スコア(独自算出の注目度): 2.840384720502993
- License:
- Abstract: Fully automated self-driving laboratories are promising to enable high-throughput and large-scale scientific discovery by reducing repetitive labour. However, effective automation requires deep integration of laboratory knowledge, which is often unstructured, multimodal, and difficult to incorporate into current AI systems. This paper introduces the k-agents framework, designed to support experimentalists in organizing laboratory knowledge and automating experiments with agents. Our framework employs large language model-based agents to encapsulate laboratory knowledge including available laboratory operations and methods for analyzing experiment results. To automate experiments, we introduce execution agents that break multi-step experimental procedures into state machines, interact with other agents to execute each step and analyze the experiment results. The analyzed results are then utilized to drive state transitions, enabling closed-loop feedback control. To demonstrate its capabilities, we applied the agents to calibrate and operate a superconducting quantum processor, where they autonomously planned and executed experiments for hours, successfully producing and characterizing entangled quantum states at the level achieved by human scientists. Our knowledge-based agent system opens up new possibilities for managing laboratory knowledge and accelerating scientific discovery.
- Abstract(参考訳): 完全に自動化された自動運転車研究所は、反復労働を減らすことで、高速で大規模な科学的発見を可能にすることを約束している。
しかし、効果的な自動化には、しばしば非構造化され、マルチモーダルで、現在のAIシステムに組み込むのが難しい実験室の知識の深い統合が必要である。
本稿では,実験者の実験知識の組織化とエージェントによる実験の自動化を支援するため,k-agentsフレームワークを提案する。
本フレームワークでは,実験結果の分析方法を含む実験室の知識をカプセル化するために,大規模言語モデルに基づくエージェントを用いている。
実験を自動化するために,複数ステップの実験手順をステートマシンに分割し,他のエージェントと対話して各ステップの実行を行い,実験結果を解析する実行エージェントを導入する。
分析結果を用いて状態遷移を駆動し、クローズドループフィードバック制御を可能にする。
その能力を実証するため,超伝導量子プロセッサのキャリブレーションと動作にエージェントを応用し,自律的に何時間も実験を計画・実行し,人間科学者が達成したレベルにおける絡み合った量子状態の生成と特徴付けに成功した。
我々の知識に基づくエージェントシステムは、実験室の知識を管理し、科学的な発見を加速する新しい可能性を開く。
関連論文リスト
- Two Heads Are Better Than One: A Multi-Agent System Has the Potential to Improve Scientific Idea Generation [48.29699224989952]
VirSciは研究のアイデアを共同で生成し、評価し、洗練するエージェントのチームを組織している。
このマルチエージェントアプローチは、新規で影響力のある科学的アイデアを生み出す上で、最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-12T07:16:22Z) - LucidGrasp: Robotic Framework for Autonomous Manipulation of Laboratory Equipment with Different Degrees of Transparency via 6D Pose Estimation [8.961549735358213]
この作業には、液体で満たされた物体を操作するための自律モードを備えたロボットフレームワークの開発が含まれる。
提案するロボットフレームワークは、非自明な操作タスクを実行する問題を解くことができるため、実験室の自動化に応用できる。
論文 参考訳(メタデータ) (2024-10-10T10:40:42Z) - Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition [48.65867987106428]
本稿では,人間とロボットの協調学習システムについて紹介する。
これにより、ロボットエンドエフェクターの制御を学習支援エージェントと共有することができる。
これにより、ダウンストリームタスクにおいて、収集されたデータが十分な品質であることを保証しながら、人間の適応の必要性を減らすことができる。
論文 参考訳(メタデータ) (2024-06-29T03:37:29Z) - Empowering Biomedical Discovery with AI Agents [15.125735219811268]
我々は「AI科学者」を懐疑的な学習と推論が可能なシステムとして想定する。
バイオメディカルAIエージェントは、人間の創造性と専門知識と、大規模なデータセットを分析するAIの能力を組み合わせる。
AIエージェントは、仮想細胞シミュレーション、プログラム可能な表現型の制御、細胞回路の設計、新しい治療法の開発など、幅広い領域に影響を与える可能性がある。
論文 参考訳(メタデータ) (2024-04-03T16:08:01Z) - MLXP: A Framework for Conducting Replicable Experiments in Python [63.37350735954699]
MLXPはPythonをベースとした,オープンソースの,シンプルで,軽量な実験管理ツールである。
実験プロセスを最小限のオーバーヘッドで合理化し、高いレベルの実践的オーバーヘッドを確保します。
論文 参考訳(メタデータ) (2024-02-21T14:22:20Z) - ProAgent: From Robotic Process Automation to Agentic Process Automation [87.0555252338361]
LLM(Large Language Models)は、人間のような知性を持つ言語である。
本稿では,ALMをベースとしたエージェントを用いた高度な自動化のための基盤的自動化パラダイムであるエージェントプロセス自動化(APA)を紹介する。
そして、人間の指示を駆使し、特殊エージェントの調整によって複雑な決定を下すように設計されたエージェントであるProAgentをインスタンス化する。
論文 参考訳(メタデータ) (2023-11-02T14:32:16Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - Demonstration-Guided Reinforcement Learning with Efficient Exploration
for Task Automation of Surgical Robot [54.80144694888735]
効率的な強化学習アルゴリズムであるDEX(Demonstration-Guided Exploration)を導入する。
本手法は,生産的相互作用を促進するために,高い値で専門家のような行動を推定する。
総合的な手術シミュレーションプラットフォームであるSurRoLによる10ドルの手術操作に関する実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-02-20T05:38:54Z) - Scalable Multi-Agent Lab Framework for Lab Optimization [0.0]
auTonomous fAcilitiesと呼ばれるマルチエージェントラボコントロールフレームワーク。
システムはエージェント・インストラメンテーションやエージェント・エージェント・インタラクションを含む、施設全体のシミュレーションを可能にする。
我々は,MultiTASKが大規模自律・半自律的な研究キャンペーンと施設で新たな研究領域を開くことを願っている。
論文 参考訳(メタデータ) (2022-08-19T00:18:19Z) - An Automated Scanning Transmission Electron Microscope Guided by Sparse
Data Analytics [0.0]
本稿では,新たに出現するスパースデータ分析によって導かれる閉ループ管楽器制御プラットフォームの設計について論じる。
機械学習によって通知される集中型コントローラが、限られた$a$$priori$知識とタスクベースの識別を組み合わせることで、オンザフライでの実験的な意思決定を駆動する様子を実証する。
論文 参考訳(メタデータ) (2021-09-30T00:25:35Z) - Automated and Autonomous Experiment in Electron and Scanning Probe
Microscopy [0.0]
連続画像形成機構を有するイメージング手法における自動実験(AE)への主要な経路の解析を目指しています。
自動実験は一般分野の知識のより広い文脈で議論されるべきであり、実験の結果、双方が実験を通知し、増大させる。
論文 参考訳(メタデータ) (2021-03-22T20:24:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。