Agents for self-driving laboratories applied to quantum computing
- URL: http://arxiv.org/abs/2412.07978v1
- Date: Tue, 10 Dec 2024 23:30:44 GMT
- Title: Agents for self-driving laboratories applied to quantum computing
- Authors: Shuxiang Cao, Zijian Zhang, Mohammed Alghadeer, Simone D Fasciati, Michele Piscitelli, Mustafa Bakr, Peter Leek, Alán Aspuru-Guzik,
- Abstract summary: This paper introduces the k-agents framework, designed to support experimentalists in organizing laboratory knowledge and automating experiments with agents.<n>Our framework employs large language model-based agents to encapsulate laboratory knowledge including available laboratory operations and methods for analyzing experiment results.<n>To automate experiments, we introduce execution agents that break multi-step experimental procedures into state machines, interact with other agents to execute each step and analyze the experiment results.
- Score: 2.840384720502993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fully automated self-driving laboratories are promising to enable high-throughput and large-scale scientific discovery by reducing repetitive labour. However, effective automation requires deep integration of laboratory knowledge, which is often unstructured, multimodal, and difficult to incorporate into current AI systems. This paper introduces the k-agents framework, designed to support experimentalists in organizing laboratory knowledge and automating experiments with agents. Our framework employs large language model-based agents to encapsulate laboratory knowledge including available laboratory operations and methods for analyzing experiment results. To automate experiments, we introduce execution agents that break multi-step experimental procedures into state machines, interact with other agents to execute each step and analyze the experiment results. The analyzed results are then utilized to drive state transitions, enabling closed-loop feedback control. To demonstrate its capabilities, we applied the agents to calibrate and operate a superconducting quantum processor, where they autonomously planned and executed experiments for hours, successfully producing and characterizing entangled quantum states at the level achieved by human scientists. Our knowledge-based agent system opens up new possibilities for managing laboratory knowledge and accelerating scientific discovery.
Related papers
- Accelerating drug discovery with Artificial: a whole-lab orchestration and scheduling system for self-driving labs [0.0]
Self-driving labs are transforming drug discovery by enabling automated, AI-guided experimentation.
But they face challenges in orchestrating complex, integrating diverse instruments and AI models, and managing data efficiently.
Artificial addresses these issues with a comprehensive orchestration and scheduling system.
It unifies lab operations, automates, and integrates AI-driven decision-making.
arXiv Detail & Related papers (2025-04-01T17:22:50Z) - Scaling Laws in Scientific Discovery with AI and Robot Scientists [72.3420699173245]
An autonomous generalist scientist (AGS) concept combines agentic AI and embodied robotics to automate the entire research lifecycle.
AGS aims to significantly reduce the time and resources needed for scientific discovery.
As these autonomous systems become increasingly integrated into the research process, we hypothesize that scientific discovery might adhere to new scaling laws.
arXiv Detail & Related papers (2025-03-28T14:00:27Z) - Autonomous Microscopy Experiments through Large Language Model Agents [4.241267255764773]
Large language models (LLMs) have accelerated the development of self-driving laboratories (SDLs) for materials research.
Here, we introduce AILA (Artificially Intelligent Lab Assistant), a framework that automates atomic force microscopy (AFM) through LLM-driven agents.
Our systematic assessment shows that state-of-the-art language models struggle even with basic tasks such as documentation retrieval.
arXiv Detail & Related papers (2024-12-18T09:35:28Z) - AutoSciLab: A Self-Driving Laboratory For Interpretable Scientific Discovery [1.1740681158785793]
AutoSciLab is a machine learning framework for driving autonomous scientific experiments.
It forms a surrogate researcher purposed for scientific discovery in high-dimensional spaces.
Applying our framework to an open-ended nanophotonics challenge, AutoSciLab uncovers a fundamentally novel method for directing incoherent light emission.
arXiv Detail & Related papers (2024-12-16T20:41:46Z) - Many Heads Are Better Than One: Improved Scientific Idea Generation by A LLM-Based Multi-Agent System [62.832818186789545]
Virtual Scientists (VirSci) is a multi-agent system designed to mimic the teamwork inherent in scientific research.
VirSci organizes a team of agents to collaboratively generate, evaluate, and refine research ideas.
We show that this multi-agent approach outperforms the state-of-the-art method in producing novel scientific ideas.
arXiv Detail & Related papers (2024-10-12T07:16:22Z) - Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition [48.65867987106428]
We introduce a novel system for joint learning between human operators and robots.
It enables human operators to share control of a robot end-effector with a learned assistive agent.
It reduces the need for human adaptation while ensuring the collected data is of sufficient quality for downstream tasks.
arXiv Detail & Related papers (2024-06-29T03:37:29Z) - AlabOS: A Python-based Reconfigurable Workflow Management Framework for Autonomous Laboratories [3.8330070166920556]
We introduce AlabOS, a general-purpose software framework for orchestrating experiments and managing resources.
AlabOS features a reconfigurable experiment workflow model and a resource reservation mechanism, enabling the simultaneous execution of varied tasks.
We demonstrate the implementation of AlabOS in a prototype autonomous materials laboratory, A-Lab, with around 3,500 samples synthesized over 1.5 years.
arXiv Detail & Related papers (2024-05-22T18:59:39Z) - Empowering Biomedical Discovery with AI Agents [15.125735219811268]
We envision "AI scientists" as systems capable of skeptical learning and reasoning.
Biomedical AI agents combine human creativity and expertise with AI's ability to analyze large datasets.
AI agents can impact areas ranging from virtual cell simulation, programmable control of phenotypes, and the design of cellular circuits to developing new therapies.
arXiv Detail & Related papers (2024-04-03T16:08:01Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [55.30328162764292]
Chemist-X is a comprehensive AI agent that automates the reaction condition optimization (RCO) task in chemical synthesis.
The agent uses retrieval-augmented generation (RAG) technology and AI-controlled wet-lab experiment executions.
Results of our automatic wet-lab experiments, achieved by fully LLM-supervised end-to-end operation with no human in the lope, prove Chemist-X's ability in self-driving laboratories.
arXiv Detail & Related papers (2023-11-16T01:21:33Z) - ProAgent: From Robotic Process Automation to Agentic Process Automation [87.0555252338361]
Large Language Models (LLMs) have emerged human-like intelligence.
This paper introduces Agentic Process Automation (APA), a groundbreaking automation paradigm using LLM-based agents for advanced automation.
We then instantiate ProAgent, an agent designed to craft from human instructions and make intricate decisions by coordinating specialized agents.
arXiv Detail & Related papers (2023-11-02T14:32:16Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - An Automated Scanning Transmission Electron Microscope Guided by Sparse
Data Analytics [0.0]
We discuss the design of a closed-loop instrument control platform guided by emerging sparse data analytics.
We demonstrate how a centralized controller, informed by machine learning combining limited $a$ $priori$ knowledge and task-based discrimination, can drive on-the-fly experimental decision-making.
arXiv Detail & Related papers (2021-09-30T00:25:35Z) - Automated and Autonomous Experiment in Electron and Scanning Probe
Microscopy [0.0]
We aim to analyze the major pathways towards automated experiment (AE) in imaging methods with sequential image formation mechanisms.
We argue that automated experiments should necessarily be discussed in a broader context of the general domain knowledge that both informs the experiment and is increased as the result of the experiment.
arXiv Detail & Related papers (2021-03-22T20:24:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.