論文の概要: Criteria and Bias of Parameterized Linear Regression under Edge of Stability Regime
- arxiv url: http://arxiv.org/abs/2412.08025v1
- Date: Wed, 11 Dec 2024 02:07:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 14:03:29.119747
- Title: Criteria and Bias of Parameterized Linear Regression under Edge of Stability Regime
- Title(参考訳): 安定回帰のエッジにおけるパラメータ化線形回帰の基準とバイアス
- Authors: Peiyuan Zhang, Amin Karbasi,
- Abstract要約: 安定性のエッジ(Edge of stability、EoS)は通常、安定性のエッジ(Edge of stability、EoS)と呼ばれる。
適切な条件下では、$l$ が二次的であっても EoS が成立することを示す。
また、より大きなステップサイズを採用すると、対角線ネットワークの暗黙のバイアスに新たな光を当てた。
- 参考スコア(独自算出の注目度): 38.134523847923646
- License:
- Abstract: Classical optimization theory requires a small step-size for gradient-based methods to converge. Nevertheless, recent findings challenge the traditional idea by empirically demonstrating Gradient Descent (GD) converges even when the step-size $\eta$ exceeds the threshold of $2/L$, where $L$ is the global smooth constant. This is usually known as the Edge of Stability (EoS) phenomenon. A widely held belief suggests that an objective function with subquadratic growth plays an important role in incurring EoS. In this paper, we provide a more comprehensive answer by considering the task of finding linear interpolator $\beta \in R^{d}$ for regression with loss function $l(\cdot)$, where $\beta$ admits parameterization as $\beta = w^2_{+} - w^2_{-}$. Contrary to the previous work that suggests a subquadratic $l$ is necessary for EoS, our novel finding reveals that EoS occurs even when $l$ is quadratic under proper conditions. This argument is made rigorous by both empirical and theoretical evidence, demonstrating the GD trajectory converges to a linear interpolator in a non-asymptotic way. Moreover, the model under quadratic $l$, also known as a depth-$2$ diagonal linear network, remains largely unexplored under the EoS regime. Our analysis then sheds some new light on the implicit bias of diagonal linear networks when a larger step-size is employed, enriching the understanding of EoS on more practical models.
- Abstract(参考訳): 古典最適化理論は勾配法を収束させるために小さなステップサイズを必要とする。
しかし、近年の発見は、ステップサイズ$\eta$が2/L$のしきい値を超えても、GD(Gradient Descent)の収束を実証することによって従来の考え方に挑戦している。
通常、この現象は「エッジ・オブ・安定性(EoS)」と呼ばれる。
広く信じられている信念は、準4次成長を持つ目的関数がEoSを誘発する上で重要な役割を担っていることを示唆している。
本稿では、線形補間子$\beta \in R^{d}$を損失関数$l(\cdot)$で回帰するタスクを考慮し、より包括的な回答を提供する。
EoS には$l$ が必須であることを示す以前の研究とは対照的に,EoS が適切な条件下では$l$ が二次的である場合においても,EoS が生じることが判明した。
この議論は経験的および理論的証拠によって厳密に行われ、GD軌道が非漸近的な方法で線形補間子に収束することを示す。
さらに、dep-$2$の対角線ネットワークとしても知られる2次$l$のモデルも、EoS体制下では探索されていない。
我々の分析は、より大きなステップサイズを採用すると、対角線ネットワークの暗黙のバイアスに新たな光を当て、より実用的なモデルにおけるEoSの理解を深める。
関連論文リスト
- Convergence Rate Analysis of LION [54.28350823319057]
LION は、勾配カルシュ=クーン=T (sqrtdK-)$で測定された $cal(sqrtdK-)$ の反復を収束する。
従来のSGDと比較して,LIONは損失が小さく,性能も高いことを示す。
論文 参考訳(メタデータ) (2024-11-12T11:30:53Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
近年の研究では、再生カーネルヒルベルト空間(RKHS)がニューラルネットワークによる関数のモデル化に適した空間ではないことが示されている。
本稿では,有界ノルムを持つオーバーパラメータ化された2層ニューラルネットワークに適した関数空間について検討する。
論文 参考訳(メタデータ) (2024-04-29T15:04:07Z) - Large Stepsize Gradient Descent for Logistic Loss: Non-Monotonicity of the Loss Improves Optimization Efficiency [47.8739414267201]
線形分離可能なデータを用いたロジスティック回帰に一定の段差を持つ勾配降下(GD)を考える。
GD はこの初期振動位相を急速に終了し、$mathcalO(eta)$ steps となり、その後$tildemathcalO (1 / (eta t) )$ convergence rate が得られることを示す。
我々の結果は、予算が$T$ ステップであれば、GD は攻撃的なステップサイズで $tildemathcalO (1/T2)$ の加速損失を達成できることを示している。
論文 参考訳(メタデータ) (2024-02-24T23:10:28Z) - Globally Convergent Accelerated Algorithms for Multilinear Sparse
Logistic Regression with $\ell_0$-constraints [2.323238724742687]
多重線形ロジスティック回帰は多次元データ解析の強力なツールである。
本稿では,$ell_0$-MLSRを解くために,アクセラレーションされた近位置換最小値MLSRモデルを提案する。
また、APALM$+$が一階臨界点に大域収束し、クルディ・ロジャシエヴィチ性質を用いて収束を確立することも示している。
論文 参考訳(メタデータ) (2023-09-17T11:05:08Z) - Implicit Bias of Gradient Descent for Logistic Regression at the Edge of
Stability [69.01076284478151]
機械学習の最適化において、勾配降下(GD)はしばしば安定性の端(EoS)で動く
本稿では,EoS系における線形分離可能なデータに対するロジスティック回帰のための定数段差GDの収束と暗黙バイアスについて検討する。
論文 参考訳(メタデータ) (2023-05-19T16:24:47Z) - Convergence of Adam Under Relaxed Assumptions [72.24779199744954]
我々は、アダムがより現実的な条件下で、$O(epsilon-4)$勾配複雑性で$epsilon$-定常点に収束することを示している。
また、Adamの分散還元版を$O(epsilon-3)$の加速勾配複雑性で提案する。
論文 参考訳(メタデータ) (2023-04-27T06:27:37Z) - Restricted Strong Convexity of Deep Learning Models with Smooth
Activations [31.003601717265006]
本研究では,スムーズなアクティベーション機能を持つディープラーニングモデルの最適化問題について検討する。
Restricted Strong Convexity (RSC) に基づく最適化の新しい解析手法を提案する。
深層学習モデルのためのRCCに基づくGDの幾何収束性を確立するための最初の結果である。
論文 参考訳(メタデータ) (2022-09-29T21:24:26Z) - Provably Efficient Convergence of Primal-Dual Actor-Critic with
Nonlinear Function Approximation [15.319335698574932]
The first efficient convergence result with primal-dual actor-critic with a convergence of $mathcalOleft ascent(Nright)Nright)$ under Polyian sample。
Open GymAI連続制御タスクの結果。
論文 参考訳(メタデータ) (2022-02-28T15:16:23Z) - Single Trajectory Nonparametric Learning of Nonlinear Dynamics [8.438421942654292]
力学系の1つの軌道が与えられた場合、非パラメトリック最小二乗推定器(LSE)の性能を解析する。
我々は最近開発された情報理論手法を活用し、非仮説クラスに対するLSEの最適性を確立する。
我々は、リプシッツ力学、一般化線形モデル、再生ケルネルヒルベルト空間(RKHS)のある種のクラスで記述される関数によって記述される力学など、実用上の関心のあるいくつかのシナリオを専門とする。
論文 参考訳(メタデータ) (2022-02-16T19:38:54Z) - Last iterate convergence of SGD for Least-Squares in the Interpolation
regime [19.05750582096579]
基本最小二乗構成におけるノイズレスモデルについて検討する。
最適予測器が完全に入力に適合すると仮定し、$langletheta_*, phi(X) rangle = Y$, ここで$phi(X)$は無限次元の非線型特徴写像を表す。
論文 参考訳(メタデータ) (2021-02-05T14:02:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。