Learning Physics Informed Neural ODEs With Partial Measurements
- URL: http://arxiv.org/abs/2412.08681v1
- Date: Wed, 11 Dec 2024 18:17:34 GMT
- Title: Learning Physics Informed Neural ODEs With Partial Measurements
- Authors: Paul Ghanem, Ahmet Demirkaya, Tales Imbiriba, Alireza Ramezani, Zachary Danziger, Deniz Erdogmus,
- Abstract summary: We tackle the problem of learning dynamics governing systems when parts of the system's states are not measured.
We present a sequential optimization framework in which dynamics governing unmeasured processes can be learned.
- Score: 13.313167463468499
- License:
- Abstract: Learning dynamics governing physical and spatiotemporal processes is a challenging problem, especially in scenarios where states are partially measured. In this work, we tackle the problem of learning dynamics governing these systems when parts of the system's states are not measured, specifically when the dynamics generating the non-measured states are unknown. Inspired by state estimation theory and Physics Informed Neural ODEs, we present a sequential optimization framework in which dynamics governing unmeasured processes can be learned. We demonstrate the performance of the proposed approach leveraging numerical simulations and a real dataset extracted from an electro-mechanical positioning system. We show how the underlying equations fit into our formalism and demonstrate the improved performance of the proposed method when compared with baselines.
Related papers
- Integrating Physics-Informed Deep Learning and Numerical Methods for Robust Dynamics Discovery and Parameter Estimation [0.0]
In this work, we combine deep learning techniques and classic numerical methods for differential equations to solve two challenging problems in dynamical systems theory.
Results demonstrate the effectiveness of the proposed approaches on a suite of test problems exhibiting chaotic dynamics.
arXiv Detail & Related papers (2024-10-05T22:40:02Z) - Physics-informed Discovery of State Variables in Second-Order and Hamiltonian Systems [1.7406327893433848]
This research proposes a method that leverages the physical characteristics of second-order Hamiltonian systems to constrain the baseline model.
The proposed model outperforms the baseline model in identifying a minimal set of non-redundant and interpretable state variables.
arXiv Detail & Related papers (2024-08-21T15:10:50Z) - Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
We present a novel method for guaranteeing linear momentum in learned physics simulations.
We enforce conservation of momentum with a hard constraint, which we realize via antisymmetrical continuous convolutional layers.
In combination, the proposed method allows us to increase the physical accuracy of the learned simulator substantially.
arXiv Detail & Related papers (2022-10-12T09:12:59Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
We introduce a method for inferring and predicting latent states in state-space models where observations can only be simulated, and transition dynamics are unknown.
We propose a way of doing likelihood-free inference (LFI) of states and state prediction with a limited number of simulations.
arXiv Detail & Related papers (2021-11-02T12:33:42Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
We propose a physics-guided framework, termed Physics-guided Deep Markov Model (PgDMM)
The proposed framework takes advantage of the expressive power of deep learning, while retaining the driving physics of the dynamical system.
arXiv Detail & Related papers (2021-10-16T16:35:12Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
We introduce Discovery of Dynamical Systems via Moving Horizon Optimization (DySMHO), a scalable machine learning framework.
DySMHO sequentially learns the underlying governing equations from a large dictionary of basis functions.
Canonical nonlinear dynamical system examples are used to demonstrate that DySMHO can accurately recover the governing laws.
arXiv Detail & Related papers (2021-07-30T20:35:03Z) - Encoding physics to learn reaction-diffusion processes [18.187800601192787]
We show how a deep learning framework that encodes given physics structure can be applied to a variety of problems regarding the PDE system regimes.
The resultant learning paradigm that encodes physics shows high accuracy, robustness, interpretability and generalizability demonstrated via extensive numerical experiments.
arXiv Detail & Related papers (2021-06-09T03:02:20Z) - Hard Encoding of Physics for Learning Spatiotemporal Dynamics [8.546520029145853]
We propose a deep learning architecture that forcibly encodes known physics knowledge to facilitate learning in a data-driven manner.
The coercive encoding mechanism of physics, which is fundamentally different from the penalty-based physics-informed learning, ensures the network to rigorously obey given physics.
arXiv Detail & Related papers (2021-05-02T21:40:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.