論文の概要: The AI Interface: Designing for the Ideal Machine-Human Experience (Editorial)
- arxiv url: http://arxiv.org/abs/2412.09000v1
- Date: Fri, 29 Nov 2024 15:17:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-15 08:00:16.544298
- Title: The AI Interface: Designing for the Ideal Machine-Human Experience (Editorial)
- Title(参考訳): AIインターフェース: 理想的なマシン・ヒューマンエクスペリエンス(エジケータ)のための設計
- Authors: Aparna Sundar, Tony Russell-Rose, Udo Kruschwitz, Karen Machleit,
- Abstract要約: 本論では,AI体験デザインの心理学を探求する特集を紹介する。
このコレクションの論文は、人間とAIの相互作用における信頼、透明性、感情的な感受性の複雑さを強調している。
8つの多様な研究から得られた知見により、この論説は、効率と共感のバランスをとるためのAIインターフェースの必要性を強調している。
- 参考スコア(独自算出の注目度): 1.8074330674710588
- License:
- Abstract: As artificial intelligence (AI) becomes increasingly embedded in daily life, designing intuitive, trustworthy, and emotionally resonant AI-human interfaces has emerged as a critical challenge. This editorial introduces a Special Issue that explores the psychology of AI experience design, focusing on how interfaces can foster seamless collaboration between humans and machines. Drawing on insights from diverse fields (healthcare, consumer technology, workplace dynamics, and cultural sector), the papers in this collection highlight the complexities of trust, transparency, and emotional sensitivity in human-AI interaction. Key themes include designing AI systems that align with user perceptions and expectations, overcoming resistance through transparency and trust, and framing AI capabilities to reduce user anxiety. By synthesizing findings from eight diverse studies, this editorial underscores the need for AI interfaces to balance efficiency with empathy, addressing both functional and emotional dimensions of user experience. Ultimately, it calls for actionable frameworks to bridge research and practice, ensuring that AI systems enhance human lives through thoughtful, human-centered design.
- Abstract(参考訳): 人工知能(AI)が日々の生活に浸透するにつれて、直感的で信頼性があり、感情的に共鳴するAI-ヒューマンインターフェースが重要な課題として浮上している。
この論説では、AI体験デザインの心理学を探求する特集号を紹介し、インターフェイスが人間と機械のシームレスなコラボレーションをいかに促進できるかに焦点を当てている。
多様な分野(医療、消費者技術、職場のダイナミクス、文化分野)からの洞察に基づいて、このコレクションの論文は、人間とAIの相互作用における信頼、透明性、感情的な感受性の複雑さを強調している。
主なテーマは、ユーザの認識と期待に沿ったAIシステムを設計すること、透明性と信頼を通じて抵抗を克服すること、ユーザの不安を軽減するためにAI機能をフレーミングすることである。
8つの多様な研究から得られた知見を合成することにより、この編集はAIインターフェースが効率と共感のバランスをとる必要性を強調し、ユーザー体験の機能的次元と感情的次元の両方に対処する。
究極的には、研究と実践を橋渡しする実行可能なフレームワークを要求し、AIシステムは思慮深い人間中心のデザインを通じて人間の生活を強化する。
関連論文リスト
- Aligning Generalisation Between Humans and Machines [74.120848518198]
近年のAIの進歩は、科学的発見と意思決定支援において人間を支援できる技術をもたらしたが、民主主義と個人を妨害する可能性がある。
AIの責任ある使用は、ますます人間とAIのチームの必要性を示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - The Model Mastery Lifecycle: A Framework for Designing Human-AI Interaction [0.0]
ますます多くの分野におけるAIの利用は、長いプロセスの最新のイテレーションである。
異なる状況でAIをどのように使うべきかを決定する方法が緊急に必要である。
論文 参考訳(メタデータ) (2024-08-23T01:00:32Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AIシステムは、ループ内の人間に説明可能である必要がある。
我々は、AIエージェントがメンタルモデルを使用して人間の期待に沿うか、あるいは説明的コミュニケーションを通じて期待を変更する方法について論じる。
本書の主な焦点は、協調的なシナリオであるが、同じ精神モデルが難読化や偽造にどのように使用できるかを指摘したい。
論文 参考訳(メタデータ) (2024-05-19T22:22:21Z) - Untangling Critical Interaction with AI in Students Written Assessment [2.8078480738404]
重要な課題は、人間が必須の批判的思考とAIリテラシースキルを備えていることを保証することである。
本稿では,AIと批判的学習者インタラクションの概念を概念化するための第一歩を提供する。
理論的モデルと経験的データの両方を用いて、予備的な発見は、書き込みプロセス中にAIとのディープインタラクションが全般的に欠如していることを示唆している。
論文 参考訳(メタデータ) (2024-04-10T12:12:50Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
物理仮想アマルガメーションの様々な形態を包含した統一表現を提供する対称現実感フレームワークを導入する。
我々は、対称現実の潜在的な応用を示すAI駆動型アクティブアシストサービスの例を提案する。
論文 参考訳(メタデータ) (2024-01-26T16:09:39Z) - Grasping AI: experiential exercises for designers [8.95562850825636]
本稿では,AIシステムにおけるインタラクション・アベイランス,ユニークなリレーショナル可能性,より広範な社会的影響を探求し,考察する手法について検討する。
比喩や制定に関する演習は、トレーニングや学習、プライバシーと同意、自律性、エージェンシーをより具体的になる。
論文 参考訳(メタデータ) (2023-10-02T15:34:08Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AIは、人間とAIアルゴリズムが相互に連続的に影響を及ぼすプロセスである。
本稿では,AIと複雑性科学の交点における新たな研究分野の基盤として,Coevolution AIを紹介した。
論文 参考訳(メタデータ) (2023-06-23T18:10:54Z) - Enhancing Human Capabilities through Symbiotic Artificial Intelligence
with Shared Sensory Experiences [6.033393331015051]
我々は、共生人工知能と共有感覚体験(SAISSE)と呼ばれる人間とAIの相互作用における新しい概念を紹介する。
SAISSEは、共有感覚体験を通じて、AIシステムと人間のユーザ間の相互に有益な関係を確立することを目的としている。
本稿では,AIシステムとユーザの両方の長期的な成長と開発のためのメモリストレージユニットの導入について論じる。
論文 参考訳(メタデータ) (2023-05-26T04:13:59Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。