論文の概要: Accuracy Improvements for Convolutional and Differential Distance Function Approximations
- arxiv url: http://arxiv.org/abs/2412.09200v1
- Date: Thu, 12 Dec 2024 11:53:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:30:51.032016
- Title: Accuracy Improvements for Convolutional and Differential Distance Function Approximations
- Title(参考訳): 畳み込み・微分距離関数近似の精度向上
- Authors: Alexander Belyaev, Pierre-Alain Fayolle,
- Abstract要約: 領域の内部点から領域の境界までの距離関数を推定する問題に対処する。
両方のスキームに対して,精度の向上を提案し,評価した。
- 参考スコア(独自算出の注目度): 50.24983453990065
- License:
- Abstract: Given a bounded domain, we deal with the problem of estimating the distance function from the internal points of the domain to the boundary of the domain. Convolutional and differential distance estimation schemes are considered and, for both the schemes, accuracy improvements are proposed and evaluated. Asymptotics of Laplace integrals and Taylor series extrapolations are used to achieve the improvements.
- Abstract(参考訳): 有界領域が与えられた場合、領域の内部点から領域の境界までの距離関数を推定する問題に対処する。
畳み込みおよび差分距離推定方式を考察し,両手法とも精度の向上を提案し,評価した。
ラプラス積分とテイラー級数外挿の漸近は、改善を達成するために用いられる。
関連論文リスト
- Quantitative Error Bounds for Scaling Limits of Stochastic Iterative Algorithms [10.022615790746466]
アルゴリズムのサンプルパスとOrnstein-Uhlenbeck近似の非漸近関数近似誤差を導出する。
我々は、L'evy-Prokhorov と有界ワッサーシュタイン距離という2つの一般的な測度で誤差境界を構築するために、主要な結果を使用する。
論文 参考訳(メタデータ) (2025-01-21T15:29:11Z) - Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
本稿では,1次と2次の両方の定常点を見つけるための信頼逐次準計画法を提案する。
本手法は, 1次定常点に収束するため, 対象対象の近似を最小化して定義された各イテレーションの勾配ステップを計算する。
2階定常点に収束するため,本手法は負曲率を減少するヘッセン行列を探索する固有ステップも計算する。
論文 参考訳(メタデータ) (2024-09-24T04:39:47Z) - Statistical Inference of Optimal Allocations I: Regularities and their Implications [3.904240476752459]
まず、ソート作用素の一般性質の詳細な解析を通して、値関数のアダマール微分可能性(英語版)を導出する。
アダマール微分可能性の結果に基づいて、関数デルタ法を用いて値関数プロセスの特性を直接導出する方法を実証する。
論文 参考訳(メタデータ) (2024-03-27T04:39:13Z) - A Stochastic-Gradient-based Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems [12.29270365918848]
提案アルゴリズムは、他のインテリアポイント法からの主観的特異な制約に基づいている。
提案アルゴリズムは,プロジェクション,ステップサイズ,シーケンスシーケンスのバランスを慎重に保ち,数値的および決定論的両方の設定において収束を保証する。
論文 参考訳(メタデータ) (2023-04-28T15:30:43Z) - Positive definite nonparametric regression using an evolutionary
algorithm with application to covariance function estimation [0.0]
定常過程の共分散関数を推定するための新しい非パラメトリック回帰フレームワークを提案する。
提案手法は, 正定性, 等方性, 単調性を推定者に課すことができる。
提案手法は,長距離依存に対する信頼性の高い推定値を提供する。
論文 参考訳(メタデータ) (2023-04-25T22:01:14Z) - Regret Bounds for Gaussian-Process Optimization in Large Domains [40.92207267407271]
最適化戦略から得られる解の準最適性(ベイズ的単純後悔)の上限を与える。
これらの後悔の境界は、評価の数、ドメインサイズ、および検索された関数値の最適性の関係を照らす。
特に、評価の数が小さすぎて大域的な最適値が見つからなかったとしても、非自明な関数値を見つけることができる。
論文 参考訳(メタデータ) (2021-04-29T05:19:03Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - Off-Policy Evaluation via the Regularized Lagrangian [110.28927184857478]
最近提案された分布補正推定(DICE)ファミリーは, 行動に依存しないデータを用いた非政治的評価において, 技術の現状を推し進めている。
本稿では,これらを線形プログラムの正規化ラグランジアンとして統一する。
双対解は、安定性と推定バイアスの間のトレードオフをナビゲートする際の柔軟性を向上し、一般的にはより優れた見積もりを提供する。
論文 参考訳(メタデータ) (2020-07-07T13:45:56Z) - The Convergence Indicator: Improved and completely characterized
parameter bounds for actual convergence of Particle Swarm Optimization [68.8204255655161]
我々は、粒子が最終的に単一点に収束するか、分岐するかを計算するのに使用できる新しい収束指標を導入する。
この収束指標を用いて、収束群につながるパラメータ領域を完全に特徴づける実際の境界を提供する。
論文 参考訳(メタデータ) (2020-06-06T19:08:05Z) - Domain Adaptation: Learning Bounds and Algorithms [80.85426994513541]
本稿では,任意の損失関数を持つ適応問題に適した分布距離,差分距離を新たに導入する。
広い損失関数族に対する領域適応のための新しい一般化境界を導出する。
また、正規化に基づくアルゴリズムの大規模クラスに対する新しい適応境界も提示する。
論文 参考訳(メタデータ) (2009-02-19T18:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。