論文の概要: Physics-Driven Autoregressive State Space Models for Medical Image Reconstruction
- arxiv url: http://arxiv.org/abs/2412.09331v3
- Date: Wed, 20 Aug 2025 21:04:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-22 14:03:17.023782
- Title: Physics-Driven Autoregressive State Space Models for Medical Image Reconstruction
- Title(参考訳): 物理駆動型医用画像再構成のための自己回帰状態モデル
- Authors: Bilal Kabas, Fuat Arslan, Valiyeh A. Nezhad, Saban Ozturk, Emine U. Saritas, Tolga Çukur,
- Abstract要約: 本研究では,高忠実かつ効率的な画像再構成のための物理駆動自己回帰状態空間モデル(SSM)であるMambaRollを提案する。
MambaRollは、各カスケードが粗いスケールの表現でより微細な特徴マップを自動回帰予測するアンロールアーキテクチャを採用している。
MambaRoll は最新 CNN 法, Transformer- 法, SSM 法を常に上回っている。
- 参考スコア(独自算出の注目度): 5.208643222679356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image reconstruction from undersampled acquisitions is an ill-posed inverse problem requiring accurate recovery of anatomical structures from incomplete measurements. Physics-driven (PD) network models have gained prominence for this task by integrating data-consistency mechanisms with learned priors, enabling improved performance over purely data-driven approaches. However, reconstruction quality still hinges on the network's ability to disentangle artifacts from true anatomical signals-both of which exhibit complex, multi-scale contextual structure. Convolutional neural networks (CNNs) capture local correlations but often struggle with non-local dependencies. While transformers aim to alleviate this limitation, practical implementations involve design compromises to reduce computational cost by balancing local and non-local sensitivity, occasionally resulting in performance comparable to CNNs. To address these challenges, we propose MambaRoll, a novel physics-driven autoregressive state space model (SSM) for high-fidelity and efficient image reconstruction. MambaRoll employs an unrolled architecture where each cascade autoregressively predicts finer-scale feature maps conditioned on coarser-scale representations, enabling consistent multi-scale context propagation. Each stage is built on a hierarchy of scale-specific PD-SSM modules that capture spatial dependencies while enforcing data consistency through residual correction. To further improve scale-aware learning, we introduce a Deep Multi-Scale Decoding (DMSD) loss, which provides supervision at intermediate spatial scales in alignment with the autoregressive design. Demonstrations on accelerated MRI and sparse-view CT reconstructions show that MambaRoll consistently outperforms state-of-the-art CNN-, transformer-, and SSM-based methods.
- Abstract(参考訳): アンダーサンプル取得による医用画像再構成は、不完全な測定から解剖学的構造を正確に復元する必要がある不適切な逆問題である。
物理駆動(PD)ネットワークモデルは、学習した事前情報とデータ一貫性機構を統合することで、純粋にデータ駆動アプローチよりも優れたパフォーマンスを実現することで、このタスクで注目されている。
しかし、再構築の品質は、複雑なマルチスケールのコンテキスト構造を示す真の解剖学的信号からアーティファクトを分離するネットワークの能力に依存している。
畳み込みニューラルネットワーク(CNN)は局所的相関を捉えるが、しばしば非局所的依存と競合する。
トランスフォーマーはこの制限を緩和することを目的としているが、実際の実装では、局所感度と非局所感度のバランスをとることで計算コストを削減するために設計上の妥協を伴い、時にはCNNに匹敵するパフォーマンスをもたらす。
これらの課題に対処するため,新しい物理駆動型自己回帰状態空間モデル(SSM)を提案する。
MambaRollは、各カスケードが粗いスケールの表現で条件付けられたより微細な特徴写像を自動回帰予測し、一貫したマルチスケールのコンテキスト伝搬を可能にするアンロールアーキテクチャを採用している。
各ステージはスケール固有のPD-SSMモジュールの階層上に構築され、空間的依存関係をキャプチャし、残差補正によってデータの一貫性を強制する。
大規模学習をさらに改善するため, 自己回帰設計に合わせて, 中間空間スケールの監視を行うDeep Multi-Scale Decoding (DMSD) の損失を導入した。
MambaRoll は最新 CNN 法, Transformer- 法, SSM 法を常に上回っている。
関連論文リスト
- Compressive Imaging Reconstruction via Tensor Decomposed Multi-Resolution Grid Encoding [50.54887630778593]
圧縮画像再構成(CI)は, 圧縮された低次元画像から高次元画像を復元することを目的としている。
既存の教師なし表現は、表現能力と効率の間の望ましいバランスを達成するのに苦労する。
本稿では,CI再構成のための非教師なし連続表現フレームワークである分割多重解像度グリッド符号化(GridTD)を提案する。
論文 参考訳(メタデータ) (2025-07-10T12:36:20Z) - Self-Consistent Nested Diffusion Bridge for Accelerated MRI Reconstruction [22.589087990596887]
画像画像を用いたMRI画像再構成の課題に焦点をあてる。
拡散モデルの最近の進歩、特に拡散確率モデルのデノベーションは、画像先行をモデル化する上で強力な能力を示している。
我々は,MRI再構成の高速化をモデルとした自己持続性ネスト拡散橋(SC-NDB)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-13T09:35:34Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - MambaClinix: Hierarchical Gated Convolution and Mamba-Based U-Net for Enhanced 3D Medical Image Segmentation [6.673169053236727]
医用画像分割のための新しいU字型アーキテクチャであるMambaClinixを提案する。
MambaClinixは、階層的なゲート畳み込みネットワークとMambaを適応的なステージワイドフレームワークに統合する。
以上の結果から,MambaClinixは低モデルの複雑さを維持しつつ高いセグメンテーション精度を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-09-19T07:51:14Z) - Cross-Scan Mamba with Masked Training for Robust Spectral Imaging [51.557804095896174]
本研究では,空間スペクトルSSMを用いたクロススキャンマンバ(CS-Mamba)を提案する。
実験の結果, CS-Mambaは最先端の性能を達成し, マスク付きトレーニング手法によりスムーズな特徴を再構築し, 視覚的品質を向上させることができた。
論文 参考訳(メタデータ) (2024-08-01T15:14:10Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)は、画像復元において優れた性能を発揮している。
本稿では,画像のデブロアに対する簡易かつ効果的な視覚状態空間モデル(EVSSM)を提案する。
論文 参考訳(メタデータ) (2024-05-23T09:13:36Z) - IRSRMamba: Infrared Image Super-Resolution via Mamba-based Wavelet Transform Feature Modulation Model [7.842507196763463]
IRSRMambaはマルチスケール適応のためのウェーブレット変換特徴変調を統合する新しいフレームワークである。
IRSRMambaはPSNR、SSIM、知覚品質において最先端の手法より優れている。
この研究は、高忠実度赤外線画像強調のための有望な方向として、Mambaベースのアーキテクチャを確立する。
論文 参考訳(メタデータ) (2024-05-16T07:49:24Z) - Look-Around Before You Leap: High-Frequency Injected Transformer for Image Restoration [46.96362010335177]
本稿では,画像復元のための簡易かつ効果的な高周波インジェクト変換器HITを提案する。
具体的には,機能マップに高頻度の詳細を組み込んだウィンドウワイドインジェクションモジュール(WIM)を設計し,高品質な画像の復元のための信頼性の高い参照を提供する。
さらに,BIMにおけるチャネル次元の計算によって失われる可能性のある空間的関係を維持するために,空間拡張ユニット(SEU)を導入する。
論文 参考訳(メタデータ) (2024-03-30T08:05:00Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定によって提供される情報のみに基づいて、画像再構成と並行して拡散モデルを適用する。
様々な画像モダリティにまたがるアウト・オブ・ディストリビューション性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
大気乱流による画像歪みは、長距離光学画像システムにおいて重要な問題である。
ディープラーニングモデルが現実世界の乱流条件に適応するために、高速で物理学的なシミュレーションツールが導入された。
本稿では,物理統合復元ネットワーク(PiRN)を提案する。
論文 参考訳(メタデータ) (2023-07-20T05:49:21Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
本稿では,参照等級画像のみを生成的設定でトレーニングした,新しいディープニューラルネットワークベース正規化器を提案する。
その結果,最先端のディープラーニング手法に匹敵する競争性能が示された。
論文 参考訳(メタデータ) (2022-10-25T08:34:29Z) - Multi-head Cascaded Swin Transformers with Attention to k-space Sampling
Pattern for Accelerated MRI Reconstruction [16.44971774468092]
我々は,McSTRA(Multi-head Cascaded Swin Transformer)と題する,物理学に基づくスタンドアロン(畳み込みフリー)トランスモデルを提案する。
当モデルでは, 画像と定量的に, 最先端のMRI再建法より有意に優れていた。
論文 参考訳(メタデータ) (2022-07-18T07:21:56Z) - Adaptive Diffusion Priors for Accelerated MRI Reconstruction [0.9895793818721335]
ディープMRI再構成は、完全にサンプリングされたデータと整合したイメージを復元するために、アンサンプされた取得をデエイリアス化する条件付きモデルで一般的に行われる。
非条件モデルは、画像演算子に関連する領域シフトに対する信頼性を向上させるために、演算子から切り離された生成画像の事前を学習する。
本稿では,MRI 再構成に先立つ適応拡散 AdaDiff を提案する。
論文 参考訳(メタデータ) (2022-07-12T22:45:08Z) - Scale-Equivariant Unrolled Neural Networks for Data-Efficient
Accelerated MRI Reconstruction [33.82162420709648]
本稿では,大規模同変畳み込みニューラルネットワークを用いたニューラルネットワークの近位演算子をモデル化する。
我々のアプローチは、同じメモリ制約下での最先端のアンロールニューラルネットワークに対する強力な改善を示す。
論文 参考訳(メタデータ) (2022-04-21T23:29:52Z) - HUMUS-Net: Hybrid unrolled multi-scale network architecture for
accelerated MRI reconstruction [38.0542877099235]
HUMUS-Netは、暗黙のバイアスと畳み込みの効率を、無ロールでマルチスケールのネットワークにおけるTransformerブロックのパワーと組み合わせたハイブリッドアーキテクチャである。
我々のネットワークは、最も広く公開されているMRIデータセットである高速MRIデータセット上で、新しい最先端技術を確立する。
論文 参考訳(メタデータ) (2022-03-15T19:26:29Z) - ResViT: Residual vision transformers for multi-modal medical image
synthesis [0.0]
本稿では、畳み込み演算子の局所的精度と視覚変換器の文脈的感度を組み合わせ、医用画像合成のための新しい生成逆変換手法ResViTを提案する。
以上の結果から,ResViTと競合する手法の質的観察と定量化の両面での優位性が示唆された。
論文 参考訳(メタデータ) (2021-06-30T12:57:37Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
強い散乱準透明物体の有限角トモグラフィーは困難で、非常に不適切な問題である。
このような問題の状況を改善することにより、アーティファクトの削減には、事前の定期化が必要である。
我々は,新しい分割畳み込みゲート再帰ユニット(SC-GRU)をビルディングブロックとして,リカレントニューラルネットワーク(RNN)アーキテクチャを考案した。
論文 参考訳(メタデータ) (2020-07-21T11:48:22Z) - Normalizing Flows with Multi-Scale Autoregressive Priors [131.895570212956]
マルチスケール自己回帰前処理(mAR)を通した遅延空間におけるチャネルワイド依存性を導入する。
我々のmARは、分割結合フロー層(mAR-SCF)を持つモデルに先立って、複雑なマルチモーダルデータの依存関係をよりよく捉えます。
我々は,mAR-SCFにより画像生成品質が向上し,FIDとインセプションのスコアは最先端のフローベースモデルと比較して向上したことを示す。
論文 参考訳(メタデータ) (2020-04-08T09:07:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。