論文の概要: Generative modeling of protein ensembles guided by crystallographic electron densities
- arxiv url: http://arxiv.org/abs/2412.13223v1
- Date: Tue, 17 Dec 2024 00:31:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:48:37.590763
- Title: Generative modeling of protein ensembles guided by crystallographic electron densities
- Title(参考訳): 結晶性電子密度で誘導されるタンパク質アンサンブルの創成モデル
- Authors: Sai Advaith Maddipatla, Nadav Bojan Sellam, Sanketh Vedula, Ailie Marx, Alex Bronstein,
- Abstract要約: この問題を解決するために,非I.D.アンサンブル誘導手法を提案する。
特定の単結晶測定で観察された複雑なマルチモーダルなタンパク質のバックボーン構造を正確に復元できることを実証した。
- 参考スコア(独自算出の注目度): 1.026104527280739
- License:
- Abstract: Proteins are dynamic, adopting ensembles of conformations. The nature of this conformational heterogenity is imprinted in the raw electron density measurements obtained from X-ray crystallography experiments. Fitting an ensemble of protein structures to these measurements is a challenging, ill-posed inverse problem. We propose a non-i.i.d. ensemble guidance approach to solve this problem using existing protein structure generative models and demonstrate that it accurately recovers complicated multi-modal alternate protein backbone conformations observed in certain single crystal measurements.
- Abstract(参考訳): タンパク質は動的であり、コンフォメーションのアンサンブルを採用する。
このコンフォメーションの不均一性の性質は、X線結晶学実験から得られた生電子密度測定にインプリントされる。
これらの測定にタンパク質構造の集合体を組み込むことは、困難で不適切な逆問題である。
本研究では, 既存のタンパク質構造生成モデルを用いて, この問題を解決するための非I.d.アンサンブル誘導手法を提案し, 特定の単結晶測定で観察される複雑なマルチモーダルなタンパク質のバックボーン構造を正確に復元することを示した。
関連論文リスト
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - cryoSPHERE: Single-particle heterogeneous reconstruction from cryo EM [9.887133861477233]
単一粒子低温電子顕微鏡(cryo EM)は、与えられたタンパク質の多数の画像を取得する強力なツールである。
本稿では,タンパク質構造を入力とする深層学習手法であるCryoSPHEREを紹介する。
論文 参考訳(メタデータ) (2024-05-29T15:12:19Z) - Protein Conformation Generation via Force-Guided SE(3) Diffusion Models [48.48934625235448]
新しいタンパク質コンホメーションを生成するために、深層生成モデリング技術が用いられている。
本稿では,タンパク質コンフォメーション生成のための力誘導SE(3)拡散モデルConfDiffを提案する。
論文 参考訳(メタデータ) (2024-03-21T02:44:08Z) - Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot
Antibody Designer [58.97153056120193]
抗体の特異性は、その相補性決定領域(CDR)によって決定される
従来の研究では、複雑な技術を使ってCDRを生成するが、不適切な幾何学的モデリングに悩まされている。
本稿では,CDRの1次元配列と3次元構造を1ショットで共設計できるテクスタイスシンプルで効果的なモデルを提案する。
論文 参考訳(メタデータ) (2023-04-21T13:24:26Z) - Protein structure generation via folding diffusion [16.12124223972183]
本稿では,タンパク質のバックボーン構造を設計する拡散モデルを提案する。
ランダムな展開状態から安定な折り畳み構造へデノイングすることで、新しい構造を生成する。
有用な資源として、タンパク質構造拡散のための最初のオープンソースおよび訓練されたモデルをリリースする。
論文 参考訳(メタデータ) (2022-09-30T17:35:53Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
タンパク質-リガンド複合体構造を直接予測できる計算手法であるNeuralPLexerを提案する。
我々の研究は、データ駆動型アプローチがタンパク質と小分子の構造的協調性を捉え、酵素や薬物分子などの設計を加速させる可能性を示唆している。
論文 参考訳(メタデータ) (2022-09-30T01:46:38Z) - Protein Structure and Sequence Generation with Equivariant Denoising
Diffusion Probabilistic Models [3.5450828190071646]
バイオエンジニアリングにおける重要な課題は、特定の3D構造と標的機能を可能にする化学的性質を持つタンパク質を設計することである。
タンパク質の構造と配列の両方の生成モデルを導入し、従来の分子生成モデルよりもはるかに大きなスケールで操作できる。
論文 参考訳(メタデータ) (2022-05-26T16:10:09Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - Energy-based models for atomic-resolution protein conformations [88.68597850243138]
原子スケールで動作するタンパク質コンホメーションのエネルギーモデル(EBM)を提案する。
このモデルは、結晶化されたタンパク質のデータにのみ訓練されている。
モデル出力と隠された表現の研究により、タンパク質エネルギーに関連する物理化学的性質を捉えることが判明した。
論文 参考訳(メタデータ) (2020-04-27T20:45:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。