Observation as Physication. A single-world unitary no-conspiracy interpretation of quantum mechanics
- URL: http://arxiv.org/abs/2412.09669v2
- Date: Thu, 09 Jan 2025 18:02:32 GMT
- Title: Observation as Physication. A single-world unitary no-conspiracy interpretation of quantum mechanics
- Authors: Ovidiu Cristinel Stoica,
- Abstract summary: I propose that the assignment of physical meaning to operators spreads through observation, along with the values of the observables.
I propose that quantum observations are nothing more than this assignment, which can be done unitarily.
- Score: 0.0
- License:
- Abstract: The physical meaning of the operators is not reducible to the intrinsic relations of the quantum system, since unitary transformations can find other operators satisfying the exact same relations. The physical meaning is determined empirically. I propose that the assignment of physical meaning to operators spreads through observation, along with the values of the observables, from the already observed degrees of freedom to the newly observed ones. I call this process "physication". I propose that quantum observations are nothing more than this assignment, which can be done unitarily. This approach doesn't require collapse, many-worlds, or a conspiratorial fine tuning of the initial conditions.
Related papers
- A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Step-by-step derivation of the algebraic structure of quantum mechanics
(or from nondisturbing to quantum correlations by connecting incompatible
observables) [0.0]
This paper provides a step-by-step derivation of the quantum formalism.
It helps us to understand why this formalism is as it is.
arXiv Detail & Related papers (2023-03-08T19:27:24Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Observers of quantum systems cannot agree to disagree [55.41644538483948]
We ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world.
We construct examples of (postquantum) no-signaling boxes where observers can agree to disagree.
arXiv Detail & Related papers (2021-02-17T19:00:04Z) - A minimalist's view of quantum mechanics [0.0]
We analyse a proposition which considers quantum theory as a mere tool for calculating probabilities for sequences of outcomes of observations made by an Observer.
Predictions are possible, provided a sequence includes at least two such observations.
arXiv Detail & Related papers (2020-05-26T13:00:00Z) - Conceptual variables, quantum theory, and statistical inference theory [0.0]
A different approach towards quantum theory is proposed in this paper.
The basis is to be conceptual variables, physical variables that may be accessible or inaccessible, i.e., it may be possible or impossible to assign numerical values to them.
arXiv Detail & Related papers (2020-05-15T08:08:55Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z) - Intersubjectivity and value reproducibility of outcomes of quantum measurements [0.0]
We show that a quantum mechanical analysis turns down the view that every measurement determines a single value as its outcome.
Contrary to the widespread view in favor of the second, we shall show that quantum mechanics predicts that only the first case occurs.
arXiv Detail & Related papers (2019-11-08T12:52:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.