論文の概要: Three-in-One: Robust Enhanced Universal Transferable Anti-Facial Retrieval in Online Social Networks
- arxiv url: http://arxiv.org/abs/2412.09692v2
- Date: Mon, 23 Dec 2024 14:36:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 19:20:51.462622
- Title: Three-in-One: Robust Enhanced Universal Transferable Anti-Facial Retrieval in Online Social Networks
- Title(参考訳): 3対1: オンラインソーシャルネットワークにおけるロバスト拡張ユニバーサルトランスファー可能なアンチファシアル検索
- Authors: Yunna Lv, Long Tang, Dengpan Ye, Caiyun Xie, Jiacheng Deng, Yiheng He,
- Abstract要約: 3-in-One Adversarial Perturbation (TOAP) は、ユニバーサルトランスファー可能な抗顔面検索法である。
現実世界のシナリオでは、悪意のある検索からプライベートイメージを効果的に保護することができる。
- 参考スコア(独自算出の注目度): 3.6658418435129922
- License:
- Abstract: Deep hash-based retrieval techniques are widely used in facial retrieval systems to improve the efficiency of facial matching. However, it also carries the danger of exposing private information. Deep hash models are easily influenced by adversarial examples, which can be leveraged to protect private images from malicious retrieval. The existing adversarial example methods against deep hash models focus on universality and transferability, lacking the research on its robustness in online social networks (OSNs), which leads to their failure in anti-retrieval after post-processing. Therefore, we provide the first in-depth discussion on robustness adversarial perturbation in universal transferable anti-facial retrieval and propose Three-in-One Adversarial Perturbation (TOAP). Specifically, we construct a local and global Compression Generator (CG) to simulate complex post-processing scenarios, which can be used to mitigate perturbation. Then, we propose robust optimization objectives based on the discovery of the variation patterns of model's distribution after post-processing, and generate adversarial examples using these objectives and meta-learning. Finally, we iteratively optimize perturbation by alternately generating adversarial examples and fine-tuning the CG, balancing the performance of perturbation while enhancing CG's ability to mitigate them. Numerous experiments demonstrate that, in addition to its advantages in universality and transferability, TOAP significantly outperforms current state-of-the-art methods in multiple robustness metrics. It further improves universality and transferability by 5% to 28%, and achieves up to about 33% significant improvement in several simulated post-processing scenarios as well as mainstream OSNs, demonstrating that TOAP can effectively protect private images from malicious retrieval in real-world scenarios.
- Abstract(参考訳): ディープハッシュに基づく検索技術は、顔マッチングの効率を向上させるために顔検索システムで広く用いられている。
しかし、個人情報を暴露する危険性もある。
ディープハッシュモデルは、悪意のある検索からプライベートイメージを保護するために利用することができる敵対的な例の影響を受けやすい。
ディープハッシュモデルに対する既存の敵対的な例は、オンラインソーシャルネットワーク(OSN)におけるロバスト性の研究が欠如しており、後処理後の反検索の失敗につながっている。
そこで我々は, ユニバーサルトランスファー可能な抗顔面検索における頑健性逆境摂動について, より深い議論を行い, 3-in-One Adversarial Perturbation (TOAP) を提案する。
具体的には、複雑な後処理シナリオをシミュレートするために、局所的かつグローバルな圧縮生成器(CG)を構築し、摂動を軽減できる。
そして,後処理後のモデル分布の変動パターンの発見に基づくロバストな最適化目標を提案し,これらの目的とメタラーニングを用いた逆例を生成する。
最後に、逆転例を交互に生成し、CGを微調整することにより摂動を反復的に最適化し、摂動性能のバランスを保ちつつ、CGの緩和能力を高める。
多くの実験により、TOAPは普遍性と転送可能性の利点に加えて、複数のロバストネス指標において現在の最先端手法よりも著しく優れていることが示されている。
さらに、ユニバーサル性とトランスファービリティを5%から28%向上させ、いくつかのシミュレーション後処理シナリオとメインストリームOSNで最大33%の大幅な改善を実現し、TOAPが実際のシナリオにおける悪意のある検索からプライベートイメージを効果的に保護できることを実証した。
関連論文リスト
- Scalable and Effective Negative Sample Generation for Hyperedge Prediction [55.9298019975967]
ハイパーエッジ予測は、Webベースのアプリケーションにおける複雑なマルチエンタリティ相互作用を理解するために不可欠である。
従来の手法では、正と負のインスタンスの不均衡により、高品質な負のサンプルを生成するのが困難であることが多い。
本稿では,これらの課題に対処するために拡散モデルを利用するハイパーエッジ予測(SEHP)フレームワークのスケーラブルで効果的な負のサンプル生成について述べる。
論文 参考訳(メタデータ) (2024-11-19T09:16:25Z) - Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
本稿では, 対向性, 可視性に優れた対向性例を生成できるASMA(Adversarial Semantic Mask Attack framework)を提案する。
具体的には, 局所的なセマンティック領域の摂動を抑制し, 良好なステルス性を実現する, 対向型セマンティックマスク生成モデルを提案する。
論文 参考訳(メタデータ) (2024-06-16T10:38:11Z) - A visualization method for data domain changes in CNN networks and the optimization method for selecting thresholds in classification tasks [1.1118946307353794]
Face Anti-Spoofing (FAS) は、顔認識技術のセキュリティを維持する上で重要な役割を担っている。
偽造顔生成技術の台頭に伴い、デジタル編集された顔が反偽造に直面する課題がエスカレートしている。
本稿では,データセット上での予測結果を可視化することにより,モデルのトレーニング結果を直感的に反映する可視化手法を提案する。
論文 参考訳(メタデータ) (2024-04-19T03:12:17Z) - Deepfake Sentry: Harnessing Ensemble Intelligence for Resilient Detection and Generalisation [0.8796261172196743]
本稿では,持続的かつ積極的なディープフェイクトレーニング強化ソリューションを提案する。
我々は、ディープフェイクジェネレータモデルによって導入されたアーティファクトの効果を模倣するオートエンコーダのプールを採用する。
実験の結果,提案するアンサンブル・オートエンコーダに基づくデータ拡張学習手法が一般化の点で改善されていることがわかった。
論文 参考訳(メタデータ) (2024-03-29T19:09:08Z) - Diffusion Models for Adversarial Purification [69.1882221038846]
対人浄化(Adrial purification)とは、生成モデルを用いて敵の摂動を除去する防衛方法の分類である。
そこで我々は,拡散モデルを用いたDiffPureを提案する。
提案手法は,現在の対人訓練および対人浄化方法よりも優れ,最先端の成果を達成する。
論文 参考訳(メタデータ) (2022-05-16T06:03:00Z) - Dual Spoof Disentanglement Generation for Face Anti-spoofing with Depth
Uncertainty Learning [54.15303628138665]
フェース・アンチ・スプーフィング(FAS)は、顔認識システムが提示攻撃を防ぐ上で重要な役割を担っている。
既存のフェース・アンチ・スプーフィング・データセットは、アイデンティティと重要なばらつきが不十分なため、多様性を欠いている。
我々は「生成によるアンチ・スプーフィング」によりこの問題に対処するデュアル・スポット・ディアンタングメント・ジェネレーション・フレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-01T15:36:59Z) - Improving White-box Robustness of Pre-processing Defenses via Joint Adversarial Training [106.34722726264522]
対向騒音の干渉を軽減するため,様々な対向防御技術が提案されている。
プレプロセス法は、ロバストネス劣化効果に悩まされることがある。
この負の効果の潜在的な原因は、敵の訓練例が静的であり、前処理モデルとは独立していることである。
本稿では,JATP(Joint Adversarial Training Based Pre-processing)防衛法を提案する。
論文 参考訳(メタデータ) (2021-06-10T01:45:32Z) - Contextual Fusion For Adversarial Robustness [0.0]
ディープニューラルネットワークは、通常、1つの特定の情報ストリームを処理し、様々な種類の敵の摂動に影響を受けやすいように設計されている。
そこで我々はPlaces-CNNとImagenet-CNNから並列に抽出した背景特徴と前景特徴を組み合わせた融合モデルを開発した。
グラデーションをベースとした攻撃では,フュージョンは乱れのないデータの性能を低下させることなく,分類の大幅な改善を可能にする。
論文 参考訳(メタデータ) (2020-11-18T20:13:23Z) - On the Effectiveness of Vision Transformers for Zero-shot Face
Anti-Spoofing [7.665392786787577]
本研究では、ゼロショットアンチスプーフィングタスクにおいて、視覚変換器モデルからの伝達学習を用いる。
提案手法は、HQ-WMCAおよびSiW-Mデータセットにおけるゼロショットプロトコルにおける最先端の手法を大きなマージンで上回る。
論文 参考訳(メタデータ) (2020-11-16T15:14:59Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
ディープ畳み込みニューラルネットワーク(DCNN)は敵の例に弱いことが判明した。
転送可能な敵の例は、DCNNの堅牢性を著しく妨げます。
DFANetは畳み込み層で使用されるドロップアウトベースの手法であり,サロゲートモデルの多様性を高めることができる。
クエリなしで4つの商用APIをうまく攻撃できる新しい対向顔ペアを生成します。
論文 参考訳(メタデータ) (2020-04-13T06:44:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。