論文の概要: Financial Sentiment Analysis: Leveraging Actual and Synthetic Data for Supervised Fine-tuning
- arxiv url: http://arxiv.org/abs/2412.09859v1
- Date: Fri, 13 Dec 2024 04:59:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:04:04.281943
- Title: Financial Sentiment Analysis: Leveraging Actual and Synthetic Data for Supervised Fine-tuning
- Title(参考訳): 財務感覚分析 : 監督された微調整のための実データと合成データを活用する
- Authors: Abraham Atsiwo,
- Abstract要約: 汎用言語モデルは、金融における感情分析には一般的すぎる。
我々は、短い財務文を長い財務文に導入し、フィンベルト-lcはデジタルテキストから感情を決定する。
その結果,ファイナンシャル・フレーズバンクのデータに対するf1スコアが50%,合意レベルが100%であった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The Efficient Market Hypothesis (EMH) highlights the essence of financial news in stock price movement. Financial news comes in the form of corporate announcements, news titles, and other forms of digital text. The generation of insights from financial news can be done with sentiment analysis. General-purpose language models are too general for sentiment analysis in finance. Curated labeled data for fine-tuning general-purpose language models are scare, and existing fine-tuned models for sentiment analysis in finance do not capture the maximum context width. We hypothesize that using actual and synthetic data can improve performance. We introduce BertNSP-finance to concatenate shorter financial sentences into longer financial sentences, and finbert-lc to determine sentiment from digital text. The results show improved performance on the accuracy and the f1 score for the financial phrasebank data with $50\%$ and $100\%$ agreement levels.
- Abstract(参考訳): 効率的な市場仮説(EMH)は、株価運動における金融ニュースの本質を強調している。
ファイナンシャルニュースは、企業発表やニュースタイトル、その他のデジタルテキストの形で提供される。
金融ニュースからの洞察の生成は、感情分析によって行うことができる。
汎用言語モデルは、金融における感情分析には一般的すぎる。
微調整された汎用言語モデルのためのラベル付きデータが不足しており、財務における感情分析のための既存の微調整されたモデルは、最大文脈幅を捉えていない。
実データと合成データを使えば性能が向上する、という仮説を立てる。
我々は、短い財務文を長い財務文にまとめるためにBertNSP-financeを導入し、デジタルテキストから感情を決定するためにfinbert-lcを紹介した。
その結果,ファイナンシャル・フレーズバンクのデータに対するf1スコアが50\%,100\%の合意レベルで向上した。
関連論文リスト
- Financial Sentiment Analysis on News and Reports Using Large Language Models and FinBERT [0.0]
本稿では,大規模言語モデル(LLM)とFinBERTの財務感情分析への応用について検討する。
この研究は、感情分類精度を向上させるため、ゼロショットと少数ショット戦略による迅速なエンジニアリングの利点を強調している。
論文 参考訳(メタデータ) (2024-10-02T19:48:17Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBenは、24の財務タスクにまたがる36のデータセットを含む、最初の大規模なオープンソース評価ベンチマークである。
FinBenは、幅広いタスクとデータセット、ストックトレーディングの最初の評価、新しいエージェントと検索可能な生成(RAG)の評価、およびテキスト要約、質問応答、株式トレーディングのための3つの新しいオープンソース評価データセットを提供する。
論文 参考訳(メタデータ) (2024-02-20T02:16:16Z) - Instruct-FinGPT: Financial Sentiment Analysis by Instruction Tuning of
General-Purpose Large Language Models [18.212210748797332]
本稿では,これらの問題に対処する簡易かつ効果的な命令チューニング手法を提案する。
実験では, 最先端の教師付き感情分析モデルより優れていた。
論文 参考訳(メタデータ) (2023-06-22T03:56:38Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIUは、命令データ付き微調整LLaMAに基づく最初の金融大規模言語モデル(LLM)を含む包括的なフレームワークである。
我々はLLaMAを細調整してFinMAを提案する。
我々は、FinMAと既存のLLMを詳細に分析し、重要な財政課題に対処する際の長所と短所を明らかにする。
論文 参考訳(メタデータ) (2023-06-08T14:20:29Z) - Measuring Consistency in Text-based Financial Forecasting Models [10.339586273664725]
FinTrustは財務文書の論理的一貫性を評価する評価ツールである。
金融予測のための最先端NLPモデルの整合性は乏しいことを示す。
意味保存による性能劣化の分析は,現在のテキストベースの手法が市場情報の堅牢な予測に適していないことを示唆している。
論文 参考訳(メタデータ) (2023-05-15T10:32:26Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - FinEAS: Financial Embedding Analysis of Sentiment [0.0]
FinEAS(Financial Embedding Analysis of Sentiment)と呼ばれる新しい言語表現モデルを導入する。
本研究では,標準的なBERTモデルからの教師付き微調整文の埋め込みに基づく財務感情分析の新しいモデルを提案する。
論文 参考訳(メタデータ) (2021-10-31T15:41:56Z) - Tracking Turbulence Through Financial News During COVID-19 [12.031113181911627]
我々は、2020年のパンデミックの米国金融崩壊における金融出版物の感情に関する関係を明らかにし、議論する。
まず、アメリカの大手金融ニュース出版社の記事に対して、金融感情に関する専門的な注釈をいくつか紹介する。
探索的なデータ分析の後、金融感情を予測するタスクに対処するCNNベースのアーキテクチャについて述べる。
論文 参考訳(メタデータ) (2021-09-09T15:55:32Z) - FinQA: A Dataset of Numerical Reasoning over Financial Data [52.7249610894623]
我々は、大量の財務文書の分析を自動化することを目的として、財務データに関する深い質問に答えることに重点を置いている。
我々は,金融専門家が作成した財務報告に対して質問回答のペアを用いた,新たな大規模データセットFinQAを提案する。
その結果、人気があり、大規模で、事前訓練されたモデルは、金融知識を得るための専門的な人間には程遠いことが示される。
論文 参考訳(メタデータ) (2021-09-01T00:08:14Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
金融指標、株価、為替レートなどの複数の時系列は、市場が潜んでいる状態に依存しているため、強く結びついている。
金融時系列間の関係を多出力ガウスプロセスでモデル化することで学習することに注力する。
論文 参考訳(メタデータ) (2020-02-11T19:18:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。