論文の概要: Financial Fine-tuning a Large Time Series Model
- arxiv url: http://arxiv.org/abs/2412.09880v1
- Date: Fri, 13 Dec 2024 05:51:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:01:40.879767
- Title: Financial Fine-tuning a Large Time Series Model
- Title(参考訳): 大規模時系列モデルによる財務微調整
- Authors: Xinghong Fu, Masanori Hirano, Kentaro Imajo,
- Abstract要約: 我々は,最新の時系列基礎モデルTimesFMの性能を価格予測に基づいて評価した。
価格データの不規則性のため、TimesFMを直接適用すると不満足な結果が得られます。
我々は、価格予測のタスクのために、財務データにTimeFMを微調整することを提案する。
- 参考スコア(独自算出の注目度): 1.2894076331861153
- License:
- Abstract: Large models have shown unprecedented capabilities in natural language processing, image generation, and most recently, time series forecasting. This leads us to ask the question: treating market prices as a time series, can large models be used to predict the market? In this paper, we answer this by evaluating the performance of the latest time series foundation model TimesFM on price prediction. We find that due to the irregular nature of price data, directly applying TimesFM gives unsatisfactory results and propose to fine-tune TimeFM on financial data for the task of price prediction. This is done by continual pre-training of the latest time series foundation model TimesFM on price data containing 100 million time points, spanning a range of financial instruments spanning hourly and daily granularities. The fine-tuned model demonstrates higher price prediction accuracy than the baseline model. We conduct mock trading for our model in various financial markets and show that it outperforms various benchmarks in terms of returns, sharpe ratio, max drawdown and trading cost.
- Abstract(参考訳): 大規模モデルは、自然言語処理、画像生成、そして最近では時系列予測において前例のない能力を示している。
市場価格を時系列として扱うことで、大きなモデルで市場を予測することができるのか?
本稿では,最新の時系列基盤モデルであるTimesFMの性能を価格予測で評価することで,この問題に対処する。
価格データに不規則な性質があるため,TimeFMを直接適用すると不満足な結果が得られ,価格予測を行うための財務データにTimeFMを微調整することを提案する。
これは、最新の時系列基盤モデルであるTimesFMの1億のタイムポイントを含む価格データに対して、時間や日々の粒度にまたがるさまざまな金融商品を継続的に事前訓練することで実現される。
微調整モデルはベースラインモデルよりも高い価格予測精度を示す。
我々は、さまざまな金融市場でモデルに対するモックトレーディングを行い、リターン、シャープ比、最大引下げ、トレーディングコストの点で、様々なベンチマークを上回っていることを示す。
関連論文リスト
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
時系列基礎モデルはゼロショット予測に優れ、明示的なトレーニングなしで多様なタスクを処理する。
GIFT-Evalは、多様なデータセットに対する評価を促進するための先駆的なベンチマークである。
GIFT-Evalには、144,000の時系列と17700万のデータポイントの23のデータセットが含まれている。
論文 参考訳(メタデータ) (2024-10-14T11:29:38Z) - StockTime: A Time Series Specialized Large Language Model Architecture for Stock Price Prediction [13.52020491768311]
株価時系列データに特化して設計された新しいLCMベースのアーキテクチャであるStockTimeを紹介する。
最近のFinLLMとは異なり、StockTimeは特に株価時系列データのために設計されている。
このマルチモーダルデータを融合させることで、StockTimeは任意の見返り期間の株価を効果的に予測する。
論文 参考訳(メタデータ) (2024-08-25T00:50:33Z) - Text2TimeSeries: Enhancing Financial Forecasting through Time Series Prediction Updates with Event-Driven Insights from Large Language Models [9.991327369572819]
本稿では,関連事象に関するテキスト情報を組み込んだ協調モデリングフレームワークを提案する。
我々は、将来の変更に関する大規模言語モデルの直感を活用して、実数時系列の予測を更新する。
論文 参考訳(メタデータ) (2024-07-04T07:21:38Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
ディープラーニングモデルは、金融時系列データの予測問題など、さまざまな領域から来る多くの問題において、大幅なパフォーマンス改善をもたらしている。
近年,制限順序書の時系列予測の効率的かつ高性能なモデルとして,時間的注意強化バイリニアネットワークが提案されている。
本稿では,モデルの低ランクテンソル近似を提案し,トレーニング可能なパラメータの数をさらに削減し,その速度を向上する。
論文 参考訳(メタデータ) (2021-07-05T10:15:23Z) - Design and Analysis of Robust Deep Learning Models for Stock Price
Prediction [0.0]
株価と株価の動きの堅牢かつ正確な予測のための予測モデルを構築することは、解決すべき課題である。
本章では、インド国立証券取引所(NSE)の多角化部門に上場する株式の将来価格の堅牢かつ正確な予測のために、ディープラーニングアーキテクチャ上に構築された予測回帰モデル集を提案する。
論文 参考訳(メタデータ) (2021-06-17T17:15:02Z) - Robust Analysis of Stock Price Time Series Using CNN and LSTM-Based Deep
Learning Models [0.0]
本稿では,株価予測において非常に高い精度が得られるディープラーニングに基づく回帰モデルについて述べる。
我々は4つの畳み込みニューラルネットワーク(CNN)と5つの長期記憶と短期記憶に基づくディープラーニングモデルを構築し、将来の株価を正確に予測する。
論文 参考訳(メタデータ) (2020-11-07T16:07:10Z) - A Time Series Analysis-Based Stock Price Prediction Using Machine
Learning and Deep Learning Models [0.0]
我々は、統計的、機械学習、ディープラーニングモデルの集合から成り立つ、非常に堅牢で正確な株価予測の枠組みを提示する。
当社は、インドの国立証券取引所(NSE)に上場している非常に有名な企業の、毎日の株価データを5分間隔で収集しています。
統計,機械学習,深層学習を組み合わせたモデル構築の凝集的アプローチは,株価データの揮発性およびランダムな動きパターンから極めて効果的に学習できる,と我々は主張する。
論文 参考訳(メタデータ) (2020-04-17T19:41:22Z) - Gaussian process imputation of multiple financial series [71.08576457371433]
金融指標、株価、為替レートなどの複数の時系列は、市場が潜んでいる状態に依存しているため、強く結びついている。
金融時系列間の関係を多出力ガウスプロセスでモデル化することで学習することに注力する。
論文 参考訳(メタデータ) (2020-02-11T19:18:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。