Enhancing Nursing and Elderly Care with Large Language Models: An AI-Driven Framework
- URL: http://arxiv.org/abs/2412.09946v1
- Date: Fri, 13 Dec 2024 08:10:56 GMT
- Title: Enhancing Nursing and Elderly Care with Large Language Models: An AI-Driven Framework
- Authors: Qiao Sun, Jiexin Xie, Nanyang Ye, Qinying Gu, Shijie Guo,
- Abstract summary: This paper explores the application of large language models (LLMs) in nursing and elderly care, focusing on AI-driven patient monitoring and interaction.<n>We introduce a novel Chinese nursing dataset and implement incremental pre-training (IPT) and supervised fine-tuning (SFT) techniques to enhance LLM performance in specialized tasks.
- Score: 9.201523682061753
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper explores the application of large language models (LLMs) in nursing and elderly care, focusing on AI-driven patient monitoring and interaction. We introduce a novel Chinese nursing dataset and implement incremental pre-training (IPT) and supervised fine-tuning (SFT) techniques to enhance LLM performance in specialized tasks. Using LangChain, we develop a dynamic nursing assistant capable of real-time care and personalized interventions. Experimental results demonstrate significant improvements, paving the way for AI-driven solutions to meet the growing demands of healthcare in aging populations.
Related papers
- WoundAIssist: A Patient-Centered Mobile App for AI-Assisted Wound Care With Physicians in the Loop [2.3342755668932957]
We present WoundAIssist, a patient-centered, AI-driven mobile application designed to support telemedical wound care.<n>WoundAIssist enables patients to regularly document wounds at home via photographs and questionnaires.<n>An integrated lightweight deep learning model for on-device wound segmentation enables continuous monitoring of wound healing progression.
arXiv Detail & Related papers (2025-06-06T14:10:32Z) - TAMA: A Human-AI Collaborative Thematic Analysis Framework Using Multi-Agent LLMs for Clinical Interviews [54.35097932763878]
Thematic analysis (TA) is a widely used qualitative approach for uncovering latent meanings in unstructured text data.
Here, we propose TAMA: A Human-AI Collaborative Thematic Analysis framework using Multi-Agent LLMs for clinical interviews.
We demonstrate that TAMA outperforms existing LLM-assisted TA approaches, achieving higher thematic hit rate, coverage, and distinctiveness.
arXiv Detail & Related papers (2025-03-26T15:58:16Z) - Improving Retrospective Language Agents via Joint Policy Gradient Optimization [57.35348425288859]
RetroAct is a framework that jointly optimize both task-planning and self-reflective evolution capabilities in language agents.
We develop a two-stage joint optimization process that integrates imitation learning and reinforcement learning.
We conduct extensive experiments across various testing environments, demonstrating RetroAct has substantial improvements in task performance and decision-making processes.
arXiv Detail & Related papers (2025-03-03T12:54:54Z) - A Hybrid Data-Driven Approach For Analyzing And Predicting Inpatient Length Of Stay In Health Centre [0.0]
The study proposes an all-encompassing framework for the optimization of patient flow.
Using a comprehensive dataset of 2.3 million de-identified patient records, we analyzed demographics, diagnoses, treatments, services, costs, and charges.
Our model predicts patient length of stay (LoS) upon admission using supervised learning algorithms.
arXiv Detail & Related papers (2025-01-30T18:01:48Z) - Integrating Reinforcement Learning and AI Agents for Adaptive Robotic Interaction and Assistance in Dementia Care [5.749791442522375]
This study explores a novel approach to advancing dementia care by integrating socially assistive robotics, reinforcement learning (RL), large language models (LLMs), and clinical domain expertise within a simulated environment.
arXiv Detail & Related papers (2025-01-28T06:38:24Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - Toward Large Language Models as a Therapeutic Tool: Comparing Prompting Techniques to Improve GPT-Delivered Problem-Solving Therapy [6.952909762512736]
We examine the effects of prompt engineering to guide Large Language Models (LLMs) in delivering parts of a Problem-Solving Therapy session via text.
We demonstrate that the models' capability to deliver protocolized therapy can be improved with the proper use of prompt engineering methods.
arXiv Detail & Related papers (2024-08-27T17:25:16Z) - Speaking the Same Language: Leveraging LLMs in Standardizing Clinical Data for AI [0.0]
This study delves into the adoption of large language models to address specific challenges, specifically, the standardization of healthcare data.
Our results illustrate that employing large language models significantly diminishes the necessity for manual data curation.
The proposed methodology has the propensity to expedite the integration of AI in healthcare, ameliorate the quality of patient care, whilst minimizing the time and financial resources necessary for the preparation of data for AI.
arXiv Detail & Related papers (2024-08-16T20:51:21Z) - STLLaVA-Med: Self-Training Large Language and Vision Assistant for Medical Question-Answering [58.79671189792399]
STLLaVA-Med is designed to train a policy model capable of auto-generating medical visual instruction data.
We validate the efficacy and data efficiency of STLLaVA-Med across three major medical Visual Question Answering (VQA) benchmarks.
arXiv Detail & Related papers (2024-06-28T15:01:23Z) - Towards Human-AI Collaboration in Healthcare: Guided Deferral Systems with Large Language Models [1.2281181385434294]
Large language models (LLMs) present a valuable technology for various applications in healthcare.
Their tendency to hallucinate introduces unacceptable uncertainty in critical decision-making situations.
Human-AI collaboration can mitigate this uncertainty by combining human and AI strengths for better outcomes.
This paper presents a novel guided deferral system that provides intelligent guidance when AI defers cases to human decision-makers.
arXiv Detail & Related papers (2024-06-11T12:41:54Z) - Multi-Site Clinical Federated Learning using Recursive and Attentive
Models and NVFlare [13.176351544342735]
This paper develops an integrated framework that addresses data privacy and regulatory compliance challenges.
It includes the development of an integrated framework that addresses data privacy and regulatory compliance challenges while maintaining elevated accuracy and substantiating the efficacy of the proposed approach.
arXiv Detail & Related papers (2023-06-28T17:00:32Z) - MedAlpaca -- An Open-Source Collection of Medical Conversational AI
Models and Training Data [40.97474177100237]
Large language models (LLMs) hold considerable promise for improving medical, diagnostics, patient care, and education.
Yet, there is an urgent need for open-source models that can be deployed on-premises to safeguard patient privacy.
We present an innovative dataset consisting of over 160,000 entries, specifically crafted to fine-tune LLMs for effective medical applications.
arXiv Detail & Related papers (2023-04-14T11:28:08Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.