論文の概要: Predicting Survival of Hemodialysis Patients using Federated Learning
- arxiv url: http://arxiv.org/abs/2412.10919v1
- Date: Sat, 14 Dec 2024 18:10:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:00:29.184848
- Title: Predicting Survival of Hemodialysis Patients using Federated Learning
- Title(参考訳): フェデレートラーニングによる血液透析患者の生存予測
- Authors: Abhiram Raju, Praneeth Vepakomma,
- Abstract要約: 腎臓移植のドナーリストに載っている血液透析患者は誤診され、待ち時間が遅れる可能性がある。
本稿では,インド最大の透析センターであるNephroPlusの透析患者データに対するフェデレートラーニングの性能について検討する。
- 参考スコア(独自算出の注目度): 3.038423178022283
- License:
- Abstract: Hemodialysis patients who are on donor lists for kidney transplant may get misidentified, delaying their wait time. Thus, predicting their survival time is crucial for optimizing waiting lists and personalizing treatment plans. Predicting survival times for patients often requires large quantities of high quality but sensitive data. This data is siloed and since individual datasets are smaller and less diverse, locally trained survival models do not perform as well as centralized ones. Hence, we propose the use of Federated Learning in the context of predicting survival for hemodialysis patients. Federated Learning or FL can have comparatively better performances than local models while not sharing data between centers. However, despite the increased use of such technologies, the application of FL in survival and even more, dialysis patients remains sparse. This paper studies the performance of FL for data of hemodialysis patients from NephroPlus, the largest private network of dialysis centers in India.
- Abstract(参考訳): 腎臓移植のドナーリストに載っている血液透析患者は誤診され、待ち時間が遅れる可能性がある。
したがって、待ち行列の最適化や治療計画のパーソナライズには生存時間予測が不可欠である。
患者の生存時間を予測するには、しばしば大量の高品質だが機密性の高いデータを必要とする。
このデータはサイロ化されており、個々のデータセットは小さく、多様性が低いため、局所的に訓練された生存モデルは集中型モデルと同等に機能しない。
そこで本研究では,血液透析患者の生存予測におけるフェデレートラーニング(Federated Learning)の利用を提案する。
フェデレートラーニング(Federated Learning)あるいはFLは、センター間でデータを共有せずに、ローカルモデルよりも比較的優れたパフォーマンスを持つことができる。
しかし、これらの技術の利用が増加しているにもかかわらず、FLの生存や透析患者への応用は依然として少ない。
本稿では,インド最大の透析センターであるNephroPlusの血液透析患者データに対するFLの性能について検討する。
関連論文リスト
- FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data [52.55123685248105]
心臓血管疾患(CVD)は、現在世界でも主要な死因であり、早期診断と治療の要点を浮き彫りにしている。
機械学習(ML)手法はCVDの早期診断に役立つが、その性能は高品質なデータへのアクセスに依存している。
本稿では、FedCVDという心臓血管疾患検出のための、世界初の実世界のFLベンチマークを示す。
論文 参考訳(メタデータ) (2024-10-28T02:24:01Z) - Pre-Ictal Seizure Prediction Using Personalized Deep Learning [0.0]
世界中で約2300万ないし30%のてんかん患者が薬剤抵抗性てんかん(DRE)を患っている
発作発生の予測不可能さは、安全上の問題や社会的懸念を引き起こし、DRE患者のライフスタイルを制限している。
本研究の目的は、開始から最大2時間前に発作を予測するための改良された技術と方法を使用することであった。
論文 参考訳(メタデータ) (2024-10-07T21:04:41Z) - Predicting Long-Term Allograft Survival in Liver Transplant Recipients [11.680219281917076]
移植後5年以内に肝移植患者の約20%に肝移植不全が発生する。
我々は,他の先進的生存モデルよりも優れた線形リスクスコアであるMAS(Model for Allograft Survival)を導入する。
論文 参考訳(メタデータ) (2024-08-10T04:44:36Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Comparing Federated Stochastic Gradient Descent and Federated Averaging for Predicting Hospital Length of Stay [0.0]
入院期間(LOS)を確実に予測することは,病院における資源配分の効率化に不可欠である。
従来の予測モデリングツールは、医療機関がプライバシー規則を定めているため、十分なデータと多様なデータを取得するのが難しいことが多い。
このモデリング手法は、病院外の機密データを抽出することなく、異なる病院からの分散データソースをモデル化することで協調的なモデルトレーニングを促進する。
論文 参考訳(メタデータ) (2024-07-17T17:00:20Z) - FedPseudo: Pseudo value-based Deep Learning Models for Federated
Survival Analysis [9.659041001051415]
我々はフェデプゼウドと呼ばれるフェデレーションサバイバル分析のための擬似値ベース深層学習モデルを提案する。
提案するFLフレームワークは,最良に訓練された深層生存分析モデルと同等の性能を達成している。
論文 参考訳(メタデータ) (2022-07-12T01:10:36Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
本稿では,ニューラルネットワークの本質的特性を活用し,生存分析モデルの訓練過程を関連づける。
小さな医療データセットと少数のデータセンターの現実的な設定では、このノイズはモデルを収束させるのが難しくなります。
DPFed-post は,私的フェデレート学習方式に後処理の段階を追加する。
論文 参考訳(メタデータ) (2022-02-08T10:03:24Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
新型コロナウイルスの感染拡大で医療資源が不足している。
新型コロナウイルスの診断を緩和するために、さまざまなデータ駆動型ディープラーニングモデルが開発されている。
患者のプライバシー上の懸念から、データそのものはまだ乏しい。
我々は、textbfPartial Networks (FLOP) を用いた、シンプルで効果的な textbfFederated textbfL textbfon Medical データセットを提案する。
論文 参考訳(メタデータ) (2021-02-10T01:56:58Z) - A random shuffle method to expand a narrow dataset and overcome the
associated challenges in a clinical study: a heart failure cohort example [50.591267188664666]
本研究の目的は、統計的に合法なHFデータセットのカーディナリティを高めるためにランダムシャッフル法を設計することであった。
提案されたランダムシャッフル法は、HFデータセットのカーディナリティを10回、およびランダムな繰り返し測定アプローチに続いて21回向上させることができた。
論文 参考訳(メタデータ) (2020-12-12T10:59:38Z) - DeepRite: Deep Recurrent Inverse TreatmEnt Weighting for Adjusting
Time-varying Confounding in Modern Longitudinal Observational Data [68.29870617697532]
時系列データにおける時間変化の相違に対するDeep Recurrent Inverse TreatmEnt重み付け(DeepRite)を提案する。
DeepRiteは、合成データから基底的真理を復元し、実際のデータから偏りのない処理効果を推定する。
論文 参考訳(メタデータ) (2020-10-28T15:05:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。