Constructing Confidence Intervals for Average Treatment Effects from Multiple Datasets
- URL: http://arxiv.org/abs/2412.11511v1
- Date: Mon, 16 Dec 2024 07:39:46 GMT
- Title: Constructing Confidence Intervals for Average Treatment Effects from Multiple Datasets
- Authors: Yuxin Wang, Maresa Schröder, Dennis Frauen, Jonas Schweisthal, Konstantin Hess, Stefan Feuerriegel,
- Abstract summary: We propose a new method that estimates the ATE from multiple observational datasets and provides valid CIs.<n>Our method makes little assumptions about the observational datasets and is thus widely applicable in medical practice.
- Score: 36.76175308443609
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Constructing confidence intervals (CIs) for the average treatment effect (ATE) from patient records is crucial to assess the effectiveness and safety of drugs. However, patient records typically come from different hospitals, thus raising the question of how multiple observational datasets can be effectively combined for this purpose. In our paper, we propose a new method that estimates the ATE from multiple observational datasets and provides valid CIs. Our method makes little assumptions about the observational datasets and is thus widely applicable in medical practice. The key idea of our method is that we leverage prediction-powered inferences and thereby essentially `shrink' the CIs so that we offer more precise uncertainty quantification as compared to na\"ive approaches. We further prove the unbiasedness of our method and the validity of our CIs. We confirm our theoretical results through various numerical experiments. Finally, we provide an extension of our method for constructing CIs from combinations of experimental and observational datasets.
Related papers
- Causal rule ensemble approach for multi-arm data [0.0]
Heterogeneous treatment effect (HTE) estimation is critical in medical research.
Current HTE estimation methods are primarily designed for binary comparisons.
We propose an interpretable machine learning framework for HTE estimation in multi-arm trials.
arXiv Detail & Related papers (2025-04-24T01:03:30Z) - Meta-Learners for Partially-Identified Treatment Effects Across Multiple Environments [67.80453452949303]
Estimating the conditional average treatment effect (CATE) from observational data is relevant for many applications such as personalized medicine.
Here, we focus on the widespread setting where the observational data come from multiple environments.
We propose different model-agnostic learners (so-called meta-learners) to estimate the bounds that can be used in combination with arbitrary machine learning models.
arXiv Detail & Related papers (2024-06-04T16:31:43Z) - Continuous Treatment Effect Estimation Using Gradient Interpolation and
Kernel Smoothing [43.259723628010896]
We advocate the direct approach of augmenting training individuals with independently sampled treatments and inferred counterfactual outcomes.
We evaluate our method on five benchmarks and show that our method outperforms six state-of-the-art methods on the counterfactual estimation error.
arXiv Detail & Related papers (2024-01-27T15:52:58Z) - Counterfactual Data Augmentation with Contrastive Learning [27.28511396131235]
We introduce a model-agnostic data augmentation method that imputes the counterfactual outcomes for a selected subset of individuals.
We use contrastive learning to learn a representation space and a similarity measure such that in the learned representation space close individuals identified by the learned similarity measure have similar potential outcomes.
This property ensures reliable imputation of counterfactual outcomes for the individuals with close neighbors from the alternative treatment group.
arXiv Detail & Related papers (2023-11-07T00:36:51Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on hidden confounding.
We prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods.
arXiv Detail & Related papers (2023-04-20T18:07:19Z) - Variational Temporal Deconfounder for Individualized Treatment Effect
Estimation from Longitudinal Observational Data [8.347630187110004]
Existing approaches for estimating treatment effects from longitudinal observational data are usually built upon a strong assumption of "unconfoundedness"
We propose the Variational Temporal Deconfounder (VTD), an approach that leverages deep variational embeddings in the longitudinal setting using proxies.
We test our VTD method on both synthetic and real-world clinical data, and the results show that our approach is effective when hidden confounding is the leading bias compared to other existing models.
arXiv Detail & Related papers (2022-07-23T16:43:12Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
A central obstacle in the objective assessment of treatment effect (TE) estimators in randomized control trials (RCTs) is the lack of ground truth (or validation set) to test their performance.
We provide a novel cross-validation-like methodology to address this challenge.
We evaluate our methodology across 709 RCTs implemented in the Amazon supply chain.
arXiv Detail & Related papers (2021-12-14T17:53:01Z) - Confounding Feature Acquisition for Causal Effect Estimation [6.174721516017138]
We frame this challenge as a problem of feature acquisition of confounding features for causal inference.
Our goal is to prioritize acquiring values for a fixed and known subset of missing confounders in samples that lead to efficient average treatment effect estimation.
arXiv Detail & Related papers (2020-11-17T16:28:43Z) - How and Why to Use Experimental Data to Evaluate Methods for
Observational Causal Inference [7.551130027327462]
We describe and analyze observational sampling from randomized controlled trials (OSRCT)
This method can be used to create constructed observational data sets with corresponding unbiased estimates of treatment effect.
We then perform a large-scale evaluation of seven causal inference methods over 37 data sets.
arXiv Detail & Related papers (2020-10-06T21:44:01Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
We propose a matching method that recovers direct treatment effects from randomized experiments where units are connected in an observed network.
Our method matches units almost exactly on counts of unique subgraphs within their neighborhood graphs.
arXiv Detail & Related papers (2020-03-02T15:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.