Reliable Breast Cancer Molecular Subtype Prediction based on uncertainty-aware Bayesian Deep Learning by Mammography
- URL: http://arxiv.org/abs/2412.11953v2
- Date: Thu, 19 Dec 2024 08:52:56 GMT
- Title: Reliable Breast Cancer Molecular Subtype Prediction based on uncertainty-aware Bayesian Deep Learning by Mammography
- Authors: Mohaddeseh Chegini, Ali Mahloojifar,
- Abstract summary: Deep learning methods have shown good performance in the breast cancer classification tasks using various medical images.
We propose an uncertainty-aware Bayesian deep learning model using the full mammogram images.
The separate AUC of the proposed model for each subtype was 0.71, 0.75 and 0.86 for HER2-enriched, luminal and triple-negative classes, respectively.
- Score: 0.0
- License:
- Abstract: Breast cancer is a heterogeneous disease with different molecular subtypes, clinical behavior, treatment responses as well as survival outcomes. The development of a reliable, accurate, available and inexpensive method to predict the molecular subtypes using medical images plays an important role in the diagnosis and prognosis of breast cancer. Recently, deep learning methods have shown good performance in the breast cancer classification tasks using various medical images. Despite all that success, classical deep learning cannot deliver the predictive uncertainty. The uncertainty represents the validity of the predictions. Therefore, the high predicted uncertainty might cause a negative effect in the accurate diagnosis of breast cancer molecular subtypes. To overcome this, uncertainty quantification methods are used to determine the predictive uncertainty. Accordingly, in this study, we proposed an uncertainty-aware Bayesian deep learning model using the full mammogram images. In addition, to increase the performance of the multi-class molecular subtype classification task, we proposed a novel hierarchical classification strategy, named the two-stage classification strategy. The separate AUC of the proposed model for each subtype was 0.71, 0.75 and 0.86 for HER2-enriched, luminal and triple-negative classes, respectively. The proposed model not only has a comparable performance to other studies in the field of breast cancer molecular subtypes prediction, even using full mammography images, but it is also more reliable, due to quantify the predictive uncertainty.
Related papers
- Deep learning-based classification of breast cancer molecular subtypes from H&E whole-slide images [0.0]
We investigated whether H&E-stained whole slide images could be leveraged to predict breast cancer molecular subtypes.
We used 1,433 WSIs of breast cancer in a two-step pipeline: first, classifying tumor and non-tumor tiles to use only the tumor regions for molecular subtyping.
The pipeline was tested on 221 hold-out WSIs, achieving an overall macro F1 score of 0.95 for tumor detection and 0.73 for molecular subtyping.
arXiv Detail & Related papers (2024-08-30T13:57:33Z) - Robust Melanoma Thickness Prediction via Deep Transfer Learning enhanced by XAI Techniques [39.97900702763419]
This study focuses on analyzing dermoscopy images to determine the depth of melanomas.
The Breslow depth, measured from the top of the granular layer to the deepest point of tumor invasion, serves as a crucial parameter for staging melanoma and guiding treatment decisions.
Various datasets, including ISIC and private collections, were used, comprising a total of 1162 images.
Results indicated that the models achieved significant improvements over previous methods.
arXiv Detail & Related papers (2024-06-19T11:07:55Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Convolutional neural network classification of cancer cytopathology images: taking breast cancer as an example [40.3927727959038]
This paper introduces an approach utilizing convolutional neural networks (CNNs) for the rapid categorization of pathological images.
It enables the rapid and automatic classification of pathological images into benign and malignant groups.
It demonstrates that the proposed method effectively enhances the accuracy in classifying pathological images of breast cancer.
arXiv Detail & Related papers (2024-04-12T07:08:05Z) - One-dimensional convolutional neural network model for breast cancer
subtypes classification and biochemical content evaluation using micro-FTIR
hyperspectral images [0.0]
This study created a 1D deep learning tool for breast cancer subtype evaluation and biochemical contribution.
CaReNet-V1, a novel 1D convolutional neural network, was developed to classify breast cancer (CA) and adjacent tissue (AT)
A 1D adaptation of Grad-CAM was applied to assess the biochemical impact to the classifications.
arXiv Detail & Related papers (2023-10-23T16:58:34Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - Uncertainty-Informed Deep Learning Models Enable High-Confidence
Predictions for Digital Histopathology [40.96261204117952]
We train models to identify lung adenocarcinoma vs. squamous cell carcinoma and show that high-confidence predictions outperform predictions without UQ.
We show that UQ thresholding remains reliable in the setting of domain shift, with accurate high-confidence predictions of adenocarcinoma vs. squamous cell carcinoma for out-of-distribution, non-lung cancer cohorts.
arXiv Detail & Related papers (2022-04-09T17:35:37Z) - A Novel Self-Learning Framework for Bladder Cancer Grading Using
Histopathological Images [1.244681179922733]
We present a self-learning framework to grade bladder cancer from histological images stained viachemical techniques.
We propose a novel Deep Convolutional Embedded Attention Clustering (DCEAC) which allows classifying histological patches into different levels of the disease.
arXiv Detail & Related papers (2021-06-25T11:04:04Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - DenseNet for Breast Tumor Classification in Mammographic Images [0.0]
The aim of this study is to build a deep convolutional neural network method for automatic detection, segmentation, and classification of breast lesions in mammography images.
Based on deep learning the Mask-CNN (RoIAlign) method was developed to features selection and extraction; and the classification was carried out by DenseNet architecture.
arXiv Detail & Related papers (2021-01-24T03:30:59Z) - Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms [0.4297070083645048]
We present a novel generative adversarial network (GAN) model for data augmentation that can realistically synthesize and remove lesions on mammograms.
With self-attention and semi-supervised learning components, the U-net-based architecture can generate high resolution (256x256px) outputs.
arXiv Detail & Related papers (2020-05-29T21:23:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.