論文の概要: Echo State network for coarsening dynamics of charge density waves
- arxiv url: http://arxiv.org/abs/2412.11982v1
- Date: Mon, 16 Dec 2024 17:04:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:54:04.418137
- Title: Echo State network for coarsening dynamics of charge density waves
- Title(参考訳): 電荷密度波の粗大化ダイナミクスのためのエコー状態ネットワーク
- Authors: Clement Dinh, Yunhao Fan, Gia-Wei Chern,
- Abstract要約: エコー状態ネットワーク(英語: echo state network, ESN)は、疎結合層を持つリカレントニューラルネットワークを用いた貯水池型コンピュータである。
ここでは、半古典的なホルシュタインモデルにおいて電荷密度波(CDW)の粗大化ダイナミクスをモデル化するためのESNを構築する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: An echo state network (ESN) is a type of reservoir computer that uses a recurrent neural network with a sparsely connected hidden layer. Compared with other recurrent neural networks, one great advantage of ESN is the simplicity of its training process. Yet, despite the seemingly restricted learnable parameters, ESN has been shown to successfully capture the spatial-temporal dynamics of complex patterns. Here we build an ESN to model the coarsening dynamics of charge-density waves (CDW) in a semi-classical Holstein model, which exhibits a checkerboard electron density modulation at half-filling stabilized by a commensurate lattice distortion. The inputs to the ESN are local CDW order-parameters in a finite neighborhood centered around a given site, while the output is the predicted CDW order of the center site at the next time step. Special care is taken in the design of couplings between hidden layer and input nodes to ensure lattice symmetries are properly incorporated into the ESN model. Since the model predictions depend only on CDW configurations of a finite domain, the ESN is scalable and transferrable in the sense that a model trained on dataset from a small system can be directly applied to dynamical simulations on larger lattices. Our work opens a new avenue for efficient dynamical modeling of pattern formations in functional electron materials.
- Abstract(参考訳): エコー状態ネットワーク(英語: echo state network, ESN)は、疎結合な隠れ層を持つリカレントニューラルネットワークを使用する貯水池型コンピュータである。
他のリカレントニューラルネットワークと比較して、ESNの大きな利点は、トレーニングプロセスの単純さである。
しかし、学習可能なパラメータが制限されているように見えるにもかかわらず、ESNは複雑なパターンの時空間的ダイナミクスをうまく捉えていることが示されている。
ここでは、半古典的なホルシュタインモデルにおいて、電荷密度波(CDW)の粗大化ダイナミクスをモデル化するためにESNを構築し、このモデルでは、複合格子歪みにより安定化された半充填状態でチェッカーボードの電子密度変調を示す。
ESNへの入力は、所定のサイトを中心にした有限近傍の局所CDW順序パラメータであり、出力は次のステップで中心サイトの予測CDW順序である。
ESNモデルに格子対称性を適切に組み込むために、隠れ層と入力ノードの結合設計に特に注意が払われる。
モデル予測は有限領域のCDW構成にのみ依存するため、ESNは、小さなシステムからデータセットで訓練されたモデルがより大きな格子上の動的シミュレーションに直接適用できるという意味で、スケーラブルで転送可能である。
我々の研究は、機能性電子材料におけるパターン形成の効率的な動的モデリングのための新しい道を開く。
関連論文リスト
- Self-Organizing Recurrent Stochastic Configuration Networks for Nonstationary Data Modelling [3.8719670789415925]
リカレント・コンフィグレーション・ネットワーク(Recurrent configuration network、RSCN)は、非線形力学のモデリングにおいて有望であることを示すランダム化モデルのクラスである。
本稿では,非定常データモデリングのためのネットワークの連続学習能力を高めるために,SORSCNと呼ばれる自己組織型RCCNを開発することを目的とする。
論文 参考訳(メタデータ) (2024-10-14T01:28:25Z) - Recurrent Stochastic Configuration Networks for Temporal Data Analytics [3.8719670789415925]
本稿では,問題解決のためのコンフィグレーションネットワーク(RSCN)のリカレントバージョンを開発する。
我々は、初期RCCNモデルを構築し、その後、オンラインで出力重みを更新する。
数値的な結果は,提案したRCCNが全データセットに対して良好に動作することを示す。
論文 参考訳(メタデータ) (2024-06-21T03:21:22Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Edge of stability echo state networks [5.888495030452654]
Echo State Networks (ESN) は、Echo State Property (ESP) の原則の下で動作する時系列処理モデルである。
We introduced a new ESN architecture, the Edge of stability Echo State Network (ES$2$N)
論文 参考訳(メタデータ) (2023-08-05T15:49:25Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Neural net modeling of equilibria in NSTX-U [0.0]
我々は平衡モデルと形状制御モデルに関連する2つのニューラルネットワークを開発する。
ネットワークにはEFIT01再構成アルゴリズムでトレーニングされた自由境界均衡解法であるEqnetと、Gspert符号でトレーニングされたPertnetが含まれる。
本報告では,これらのモデルが閉ループシミュレーションで確実に使用できることを示す。
論文 参考訳(メタデータ) (2022-02-28T16:09:58Z) - Inferring, Predicting, and Denoising Causal Wave Dynamics [3.9407250051441403]
DISTANA(Distributed Artificial Neural Network Architecture)は、グラフ畳み込みニューラルネットワークである。
DISTANAは、再帰パターンが観測されるので、データストリームを飾るのに非常に適していることを示す。
安定かつ正確なクローズドループ予測を数百の時間ステップで生成する。
論文 参考訳(メタデータ) (2020-09-19T08:33:53Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。