論文の概要: Empathic Coupling of Homeostatic States for Intrinsic Prosociality
- arxiv url: http://arxiv.org/abs/2412.12103v1
- Date: Sat, 16 Nov 2024 13:30:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-22 09:56:19.702285
- Title: Empathic Coupling of Homeostatic States for Intrinsic Prosociality
- Title(参考訳): 内因性社会的状態の共感的結合
- Authors: Naoto Yoshida, Kingson Man,
- Abstract要約: ホメオスタティック・セルフレギュレーションによる自律エージェントの社会的行動の出現について検討した。
本研究は, 社会的行動に資する人工エージェントにおける共感のタイプと役割を明らかにした。
- 参考スコア(独自算出の注目度): 0.276240219662896
- License:
- Abstract: When regarding the suffering of others, we often experience personal distress and feel compelled to help. Inspired by living systems, we investigate the emergence of prosocial behavior among autonomous agents that are motivated by homeostatic self-regulation. We perform multi-agent reinforcement learning, treating each agent as a vulnerable homeostat charged with maintaining its own well-being. We introduce an empathy-like mechanism to share homeostatic states between agents: an agent can either \emph{observe} their partner's internal state (cognitive empathy) or the agent's internal state can be \emph{directly coupled} to that of their partner's (affective empathy). In three simple multi-agent environments, we show that prosocial behavior arises only under homeostatic coupling - when the distress of a partner can affect one's own well-being. Our findings specify the type and role of empathy in artificial agents capable of prosocial behavior.
- Abstract(参考訳): 他人の苦しみに関して、私たちはしばしば個人的な苦痛を経験し、助けざるを得ないと感じます。
生体系にインスパイアされた自律型エージェントの社会行動の出現について, ホメオスタティック・セルフレギュレーションを動機とした検討を行った。
我々は多エージェント強化学習を行い、各エージェントを、自身の幸福を維持するための脆弱なホメオスタットとして扱う。
エージェントは、相手の内的状態(認知的共感)を、相手の内的状態(認識的共感)と、相手の内的状態(影響的共感)とを共有できる。
3つの単純なマルチエージェント環境において、パートナーの苦悩が自身の幸福に影響を及ぼす場合、社会的行動はホメオスタティック・カップリングの下でのみ起こることを示す。
本研究は, 社会的行動に資する人工エージェントにおける共感のタイプと役割を明らかにした。
関連論文リスト
- AutoCBT: An Autonomous Multi-agent Framework for Cognitive Behavioral Therapy in Psychological Counseling [57.054489290192535]
伝統的な個人の心理カウンセリングは主にニッチであり、心理学的な問題を持つ個人によって選択されることが多い。
オンラインの自動カウンセリングは、恥の感情によって助けを求めることをためらう人たちに潜在的な解決策を提供する。
論文 参考訳(メタデータ) (2025-01-16T09:57:12Z) - Emergence of human-like polarization among large language model agents [61.622596148368906]
我々は、何千もの大規模言語モデルエージェントを含むネットワーク化されたシステムをシミュレートし、それらの社会的相互作用を発見し、人間のような偏極をもたらす。
人間とLLMエージェントの類似性は、社会的分極を増幅する能力に関する懸念を提起するだけでなく、それを緩和するための有効な戦略を特定するための貴重なテストベッドとして機能する可能性も持っている。
論文 参考訳(メタデータ) (2025-01-09T11:45:05Z) - I Want to Break Free! Persuasion and Anti-Social Behavior of LLMs in Multi-Agent Settings with Social Hierarchy [13.68625980741047]
本研究では,Large Language Model (LLM) に基づくエージェントの相互作用パターンについて,厳密な社会的階層を特徴とする文脈で検討する。
本研究では,警備員と囚人エージェントが関与するシミュレートシナリオにおける説得と反社会的行動の2つの現象について検討した。
論文 参考訳(メタデータ) (2024-10-09T17:45:47Z) - Dynamics of Moral Behavior in Heterogeneous Populations of Learning Agents [3.7414804164475983]
本研究では、道徳的に異質な集団が社会的ジレンマ環境で相互作用する学習力学について研究する。
我々は、親社会と反社会的エージェント間のいくつかの非自明な相互作用を観察する。
ある種の道徳的エージェントは、より協調的な行動に向けて利己的なエージェントを操ることができる。
論文 参考訳(メタデータ) (2024-03-07T04:12:24Z) - PsySafe: A Comprehensive Framework for Psychological-based Attack, Defense, and Evaluation of Multi-agent System Safety [70.84902425123406]
大規模言語モデル(LLM)で拡張されたマルチエージェントシステムは、集団知能において重要な能力を示す。
しかし、悪意のある目的のためにこのインテリジェンスを誤用する可能性があり、重大なリスクが生じる。
本研究では,エージェント心理学を基盤とした枠組み(PsySafe)を提案し,エージェントのダークパーソナリティ特性がリスク行動にどう影響するかを明らかにする。
実験の結果,エージェント間の集団的危険行動,エージェントが危険な行動を行う際の自己反射,エージェントの心理的評価と危険な行動との相関など,いくつかの興味深い現象が明らかになった。
論文 参考訳(メタデータ) (2024-01-22T12:11:55Z) - Group Cohesion in Multi-Agent Scenarios as an Emergent Behavior [0.0]
本研究は,グループ・アフィリエイト,確実性,能力に対する本質的なニーズを持つインバインエージェントが,エージェント間の社会的行動の出現につながることを示す。
この行動は、グループ内のエージェントに対する利他主義と、グループ外のエージェントに対する敵対的な傾向を表現している。
論文 参考訳(メタデータ) (2022-11-03T18:37:05Z) - Aligning to Social Norms and Values in Interactive Narratives [89.82264844526333]
我々は、インタラクティブな物語やテキストベースのゲームにおいて、社会的に有益な規範や価値観に沿って行動するエージェントを作成することに注力する。
我々は、特別な訓練を受けた言語モデルに存在する社会的コモンセンス知識を用いて、社会的に有益な値に整合した行動にのみ、その行動空間を文脈的に制限するGAALADエージェントを紹介した。
論文 参考訳(メタデータ) (2022-05-04T09:54:33Z) - Help Me Explore: Minimal Social Interventions for Graph-Based Autotelic
Agents [7.644107117422287]
本稿では,双方の視点が,自己複製エージェントの学習に組み合わされ,スキル獲得が促進されることを論じる。
1) HME(Help Me Explore)と呼ばれる新しいソーシャルインタラクションプロトコルでは,個人と社会的に指導された探索の双方から,自律的なエージェントが恩恵を受けることができる。
GANGSTRは、HME内での学習において、最も複雑な構成を習得することで、個々の学習限界を克服する。
論文 参考訳(メタデータ) (2022-02-10T16:34:28Z) - Resonating Minds -- Emergent Collaboration Through Hierarchical Active
Inference [0.0]
精神状態(意図,目標)のレベルでの自動調整プロセスが,協調的な問題解決につながるかを検討する。
協調エージェント(HAICA)の階層的アクティブ推論モデルを提案する。
本研究では,信念共鳴と能動的推論により,迅速かつ効率的なエージェント協調が可能であり,協調認知エージェントのビルディングブロックとして機能することを示す。
論文 参考訳(メタデータ) (2021-12-02T13:23:44Z) - PHASE: PHysically-grounded Abstract Social Events for Machine Social
Perception [50.551003004553806]
私たちは、物理的に根拠のある抽象的なソーシャルイベント、フェーズのデータセットを作成します。
フェーズは人間の実験によって検証され、人間は社会出来事において豊かな相互作用を知覚する。
ベースラインモデルとして,最新のフィードフォワードニューラルネットワークよりも優れたベイズ逆計画手法SIMPLEを導入する。
論文 参考訳(メタデータ) (2021-03-02T18:44:57Z) - Learning Latent Representations to Influence Multi-Agent Interaction [65.44092264843538]
エージェントのポリシーの潜在表現を学習するための強化学習に基づくフレームワークを提案する。
提案手法は代替手段よりも優れており,他のエージェントに影響を与えることを学習している。
論文 参考訳(メタデータ) (2020-11-12T19:04:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。