SMARTCAL: An Approach to Self-Aware Tool-Use Evaluation and Calibration
- URL: http://arxiv.org/abs/2412.12151v1
- Date: Wed, 11 Dec 2024 06:09:12 GMT
- Title: SMARTCAL: An Approach to Self-Aware Tool-Use Evaluation and Calibration
- Authors: Yuanhao Shen, Xiaodan Zhu, Lei Chen,
- Abstract summary: We conduct a study on a family of state-of-the-art Large Language Models (LLMs) on three datasets with two mainstream tool-use frameworks.
Our study reveals the tool-abuse behavior of LLMs, a tendency for models to misuse tools with overconfidence.
We propose a novel approach, textitCAL, to mitigate the observed issues.
- Score: 24.739131794947838
- License:
- Abstract: The tool-use ability of Large Language Models (LLMs) has a profound impact on a wide range of industrial applications. However, LLMs' self-control and calibration capability in appropriately using tools remains understudied. The problem is consequential as it raises potential risks of degraded performance and poses a threat to the trustworthiness of the models. In this paper, we conduct a study on a family of state-of-the-art LLMs on three datasets with two mainstream tool-use frameworks. Our study reveals the tool-abuse behavior of LLMs, a tendency for models to misuse tools with overconfidence. We also find that this is a common issue regardless of model capability. Accordingly, we propose a novel approach, \textit{SMARTCAL}, to mitigate the observed issues, and our results show an average of 8.6 percent increase in the QA performance and a 21.6 percent decrease in Expected Calibration Error (ECE) compared to baseline models.
Related papers
- Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger [49.81945268343162]
We propose MeCo, an adaptive decision-making strategy for external tool use.
MeCo captures high-level cognitive signals in the representation space, guiding when to invoke tools.
Our experiments show that MeCo accurately detects LLMs' internal cognitive signals and significantly improves tool-use decision-making.
arXiv Detail & Related papers (2025-02-18T15:45:01Z) - SMART: Self-Aware Agent for Tool Overuse Mitigation [58.748554080273585]
Current Large Language Model (LLM) agents demonstrate strong reasoning and tool use capabilities, but often lack self-awareness.
This imbalance leads to Tool Overuse, where models unnecessarily rely on external tools for tasks with parametric knowledge.
We introduce SMART (Strategic Model-Aware Reasoning with Tools), a paradigm that enhances an agent's self-awareness to optimize task handling and reduce tool overuse.
arXiv Detail & Related papers (2025-02-17T04:50:37Z) - Mind the Confidence Gap: Overconfidence, Calibration, and Distractor Effects in Large Language Models [0.6091702876917281]
This paper examines how model size, mitigateors, and question types affect confidence alignment.
We introduce an evaluation framework to measure overconfidence and investigate whether multiple-choice formats or worsen miscalibration.
arXiv Detail & Related papers (2025-02-16T07:46:09Z) - Efficient Self-Improvement in Multimodal Large Language Models: A Model-Level Judge-Free Approach [31.654345704242512]
This paper introduces a novel, model-level judge-free self-improvement framework.
Our approach employs a controlled feedback mechanism while eliminating the need for MLLMs in the verification loop.
We achieve superior precision and recall with significantly lower computational demands.
arXiv Detail & Related papers (2024-11-26T00:44:37Z) - CITI: Enhancing Tool Utilizing Ability in Large Language Models without Sacrificing General Performance [17.723293304671877]
We propose a Component-based Tool-utilizing ability Injection method (CITI)
According to the gradient-based importance score of different components, CITI alleviates the capability conflicts caused by fine-tuning process.
Experimental results demonstrate that our approach achieves outstanding performance across a range of evaluation metrics.
arXiv Detail & Related papers (2024-09-20T04:06:28Z) - Large Language Models Must Be Taught to Know What They Don't Know [97.90008709512921]
We show that fine-tuning on a small dataset of correct and incorrect answers can create an uncertainty estimate with good generalization and small computational overhead.
We also investigate the mechanisms that enable reliable uncertainty estimation, finding that many models can be used as general-purpose uncertainty estimators.
arXiv Detail & Related papers (2024-06-12T16:41:31Z) - CERET: Cost-Effective Extrinsic Refinement for Text Generation [14.43795791836198]
We propose CERET, a method for refining text generations by considering semantic stability, entailment and inter-sample uncertainty measures.
Experimental results show that CERET outperforms Self-consistency and Self-rerank baselines consistently under various task setups.
arXiv Detail & Related papers (2024-06-08T22:17:52Z) - CogBench: a large language model walks into a psychology lab [12.981407327149679]
This paper introduces CogBench, a benchmark that includes ten behavioral metrics derived from seven cognitive psychology experiments.
We apply CogBench to 35 large language models (LLMs) and analyze this data using statistical multilevel modeling techniques.
We find that open-source models are less risk-prone than proprietary models and that fine-tuning on code does not necessarily enhance LLMs' behavior.
arXiv Detail & Related papers (2024-02-28T10:43:54Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
We explore the potential of deriving confidence from the distribution of multiple randomly sampled model generations, via three measures of consistency.
Results show that consistency-based calibration methods outperform existing post-hoc approaches.
We offer practical guidance on choosing suitable consistency metrics for calibration, tailored to the characteristics of various LMs.
arXiv Detail & Related papers (2024-02-21T16:15:20Z) - On the Calibration of Large Language Models and Alignment [63.605099174744865]
Confidence calibration serves as a crucial tool for gauging the reliability of deep models.
We conduct a systematic examination of the calibration of aligned language models throughout the entire construction process.
Our work sheds light on whether popular LLMs are well-calibrated and how the training process influences model calibration.
arXiv Detail & Related papers (2023-11-22T08:57:55Z) - Self-Destructing Models: Increasing the Costs of Harmful Dual Uses of
Foundation Models [103.71308117592963]
We present an algorithm for training self-destructing models leveraging techniques from meta-learning and adversarial learning.
In a small-scale experiment, we show MLAC can largely prevent a BERT-style model from being re-purposed to perform gender identification.
arXiv Detail & Related papers (2022-11-27T21:43:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.