論文の概要: The impact of AI on engineering design procedures for dynamical systems
- arxiv url: http://arxiv.org/abs/2412.12230v1
- Date: Mon, 16 Dec 2024 14:26:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 17:09:38.417224
- Title: The impact of AI on engineering design procedures for dynamical systems
- Title(参考訳): 力学系の工学的設計手順に対するAIの影響
- Authors: Kristin M. de Payrebrune, Kathrin Flaßkamp, Tom Ströhla, Thomas Sattel, Dieter Bestle, Benedict Röder, Peter Eberhard, Sebastian Peitz, Marcus Stoffel, Gulakala Rutwik, Borse Aditya, Meike Wohlleben, Walter Sextro, Maximilian Raff, C. David Remy, Manish Yadav, Merten Stender, Jan van Delden, Timo Lüddecke, Sabine C. Langer, Julius Schultz, Christopher Blech,
- Abstract要約: 本稿では,VDIガイドライン2206のVモデルを用いて,AIをエンジニアリング設計プロセスに統合する可能性を検討する。
エンジニアリング製品設計ワークフロー内の特定のステージに対する適合性に基づいて、AIメソッドを特定し、分類する。
著者らによってAI支援設計がうまく実装された一連のアプリケーション例を示す。
- 参考スコア(独自算出の注目度): 4.222932496304428
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) is driving transformative changes across numerous fields, revolutionizing conventional processes and creating new opportunities for innovation. The development of mechatronic systems is undergoing a similar transformation. Over the past decade, modeling, simulation, and optimization techniques have become integral to the design process, paving the way for the adoption of AI-based methods. In this paper, we examine the potential for integrating AI into the engineering design process, using the V-model from the VDI guideline 2206, considered the state-of-the-art in product design, as a foundation. We identify and classify AI methods based on their suitability for specific stages within the engineering product design workflow. Furthermore, we present a series of application examples where AI-assisted design has been successfully implemented by the authors. These examples, drawn from research projects within the DFG Priority Program \emph{SPP~2353: Daring More Intelligence - Design Assistants in Mechanics and Dynamics}, showcase a diverse range of applications across mechanics and mechatronics, including areas such as acoustics and robotics.
- Abstract(参考訳): 人工知能(AI)は、多くの分野にわたる変革を推進し、従来のプロセスに革命をもたらし、イノベーションの新たな機会を生み出している。
メカトロニクス系の開発も同様の変化を遂げている。
過去10年間で、モデリング、シミュレーション、最適化のテクニックがデザインプロセスに不可欠なものとなり、AIベースの手法の採用の道が開かれた。
本稿では、VDIガイドライン2206のVモデルを用いて、AIをエンジニアリング設計プロセスに統合する可能性について検討する。
エンジニアリング製品設計ワークフロー内の特定のステージに対する適合性に基づいて、AIメソッドを特定し、分類する。
さらに、著者らによってAI支援設計がうまく実装された一連のアプリケーション例を示す。
これらの例は、DFG Priority Program \emph{SPP~2353: Daring More Intelligence - Design Assistants in Mechanics and Dynamics} 内の研究プロジェクトから引き出されたもので、音響学やロボティクスなどの分野を含むメカトロニクスやメカトロニクスにまたがる様々な応用例を示している。
関連論文リスト
- An LLM-enabled Multi-Agent Autonomous Mechatronics Design Framework [49.633199780510864]
本研究は, 機械設計, 最適化, エレクトロニクス, ソフトウェア工学の専門知識を統合した多エージェント自律メカトロニクス設計フレームワークを提案する。
このフレームワークは、言語駆動のワークフローを通じて運用され、構造化された人間のフィードバックを組み込んで、現実世界の制約下での堅牢なパフォーマンスを保証する。
完全に機能する自律型容器は、最適化された推進、コスト効率の高い電子機器、高度な制御を備えていた。
論文 参考訳(メタデータ) (2025-04-20T16:57:45Z) - Towards practicable Machine Learning development using AI Engineering Blueprints [0.8654896256058138]
中小規模企業(中小企業)は、製品やプロセスにAIを実装する際に課題に直面します。
本稿では,プロプライエタリ機械学習(ML)モデル作成のための青写真の開発を目的とした研究計画を提案する。
論文 参考訳(メタデータ) (2025-04-08T19:28:05Z) - AI Agents in Engineering Design: A Multi-Agent Framework for Aesthetic and Aerodynamic Car Design [24.258618104493532]
本稿では,工学的応用,特に自動車設計プロセスに焦点をあてた「設計エージェント」の概念を紹介する。
私たちのフレームワークは、AI駆動設計エージェントを従来のエンジニアリングワークフローに統合し、創造性を高め、効率を高め、全体的な設計サイクルを大幅に加速します。
論文 参考訳(メタデータ) (2025-03-30T04:57:17Z) - AI Automatons: AI Systems Intended to Imitate Humans [54.19152688545896]
人々の行動、仕事、能力、類似性、または人間性を模倣するように設計されたAIシステムが増加している。
このようなAIシステムの研究、設計、展開、可用性は、幅広い法的、倫理的、その他の社会的影響に対する懸念を喚起している。
論文 参考訳(メタデータ) (2025-03-04T03:55:38Z) - Generative AI and Empirical Software Engineering: A Paradigm Shift [8.65285948382426]
ソフトウェア工学における生成AIの普及はパラダイムシフトである。
本稿では,AIをソフトウェア工学に統合することで,従来の研究パラダイムに挑戦する方法について考察する。
論文 参考訳(メタデータ) (2025-02-12T04:13:07Z) - Artificial intelligence inspired freeform optics design: a review [5.118772741438762]
この記事では、フリーフォーム光学設計におけるAIアプリケーションの最新開発についてレビューする。
これは、データ要求、モデル解釈可能性、計算複雑性といった課題と共に、精度とパフォーマンスの改善など、AIの利点に対処する。
フリーフォーム光学設計におけるAIの未来は、ハイブリッドデザイン手法、解釈可能なAI、AI駆動製造、特定のアプリケーションを対象とした研究の潜在的な進歩とともに、有望に思われる。
論文 参考訳(メタデータ) (2024-09-18T00:53:27Z) - Creation of Novel Soft Robot Designs using Generative AI [0.3584072049481527]
生成AIを用いたソフトアクチュエータの3次元モデルの構築について検討する。
本稿では,ソフト空気圧ロボットアクチュエータの設計による70以上のテキスト形状のペアのデータセットを作成する。
転送学習とデータ拡張技術を用いることで,拡散モデルの性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-05-03T02:55:27Z) - Prototyping with Prompts: Emerging Approaches and Challenges in Generative AI Design for Collaborative Software Teams [2.237039275844699]
生成型AIモデルは、人間のタスクに統合され、表現力のあるコンテンツの制作が可能になっている。
従来のヒューマンAI設計手法とは異なり、生成能力を設計するための新しいアプローチは、迅速なエンジニアリング戦略に重点を置いている。
我々の発見は、マルチステークホルダーチーム間のAIシステムのプロトタイピングにおける新たなプラクティスと役割シフトを浮き彫りにしている。
論文 参考訳(メタデータ) (2024-02-27T17:56:10Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
本調査では,コンピュータ支援設計における学習手法の概要について概観する。
類似性解析と検索、2Dおよび3DCADモデル合成、点雲からのCAD生成を含む。
ベンチマークデータセットとその特性の完全なリストと、この領域の研究を推進しているオープンソースコードを提供する。
論文 参考訳(メタデータ) (2024-02-27T17:11:35Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
この章は、差別化可能なインテリジェンスとオンボード機械学習に焦点を当てている。
欧州宇宙機関(ESA)Advanced Concepts Team(ACT)から選ばれたいくつかのプロジェクトについて論じる。
論文 参考訳(メタデータ) (2022-12-10T07:49:50Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
本稿では,条件付き変分オートエンコーダ(CVAE)による人間設計者向上のための性能駆動型設計探索フレームワークを提案する。
CVAEはスイスの歩行者橋の合成例18万件で訓練されている。
論文 参考訳(メタデータ) (2022-11-29T17:28:31Z) - Design of Unmanned Air Vehicles Using Transformer Surrogate Models [8.914156789222266]
我々は,無人航空機(UAV)の設計を合成するAIデザイナを開発した。
提案手法では,高額なフライトダイナミックスモデルやCADツールを動作させることなく,新規なドメイン固有符号化を用いた深部変圧器モデルを用いて,提案手法の性能評価を行う。
論文 参考訳(メタデータ) (2022-11-11T21:22:21Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - Computational Rational Engineering and Development: Synergies and
Opportunities [0.0]
本稿では,工学開発プロセスの自動化と自動化をめざした進歩と定式化の視点について検討する。
従来の人中心型ツールベースのCAEアプローチを超越して,コンピュータ・ライタリティの枠組みを設計・工学・開発における課題にまで拡張することが提案されている。
論文 参考訳(メタデータ) (2021-12-27T19:11:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。