論文の概要: Optimal Control Operator Perspective and a Neural Adaptive Spectral Method
- arxiv url: http://arxiv.org/abs/2412.12469v1
- Date: Tue, 17 Dec 2024 02:06:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:59:56.861013
- Title: Optimal Control Operator Perspective and a Neural Adaptive Spectral Method
- Title(参考訳): 最適制御演算子視点とニューラルアダプティブスペクトル法
- Authors: Mingquan Feng, Zhijie Chen, Yixin Huang, Yizhou Liu, Junchi Yan,
- Abstract要約: 最適制御問題(OCP)は、コスト関数が最適化されるような動的システムの制御関数を見つけることである。
本稿では,OCPをワンショットで解決する新しいインスタンス・ソリューション・コントロール・オペレーター・パースペクティブを提案する。
合成環境と実世界のデータセットの実験により、我々のアプローチの有効性と効率が検証された。
- 参考スコア(独自算出の注目度): 43.684201849848314
- License:
- Abstract: Optimal control problems (OCPs) involve finding a control function for a dynamical system such that a cost functional is optimized. It is central to physical systems in both academia and industry. In this paper, we propose a novel instance-solution control operator perspective, which solves OCPs in a one-shot manner without direct dependence on the explicit expression of dynamics or iterative optimization processes. The control operator is implemented by a new neural operator architecture named Neural Adaptive Spectral Method (NASM), a generalization of classical spectral methods. We theoretically validate the perspective and architecture by presenting the approximation error bounds of NASM for the control operator. Experiments on synthetic environments and a real-world dataset verify the effectiveness and efficiency of our approach, including substantial speedup in running time, and high-quality in- and out-of-distribution generalization.
- Abstract(参考訳): 最適制御問題(OCP)は、コスト関数が最適化されるような動的システムの制御関数を見つけることである。
学術と産業の両方において物理システムの中心である。
本稿では,動的あるいは反復最適化プロセスの明示的表現に直接依存することなく,OCPをワンショットで解決する新しいインスタンス・ソリューション・オペレータ・パースペクティブを提案する。
制御演算子は、古典スペクトル法を一般化したニューラル適応スペクトル法(NASM)と呼ばれる新しいニューラル演算子アーキテクチャによって実装される。
我々は、制御演算子に対するNASMの近似誤差境界を提示することにより、視点とアーキテクチャを理論的に検証する。
合成環境と実世界のデータセットによる実験により,実行時間の大幅な高速化や高品質な分布一般化など,我々のアプローチの有効性と効率が検証された。
関連論文リスト
- Explicit and Implicit Graduated Optimization in Deep Neural Networks [0.6906005491572401]
本稿では,最適雑音スケジューリングを用いた明示的な累積最適化アルゴリズムの性能を実験的に評価する。
さらに、ResNetアーキテクチャを用いた画像分類タスクの実験を通じて、その効果を実証する。
論文 参考訳(メタデータ) (2024-12-16T07:23:22Z) - Hallmarks of Optimization Trajectories in Neural Networks: Directional Exploration and Redundancy [75.15685966213832]
最適化トラジェクトリのリッチな方向構造をポイントワイズパラメータで解析する。
トレーニング中のスカラーバッチノルムパラメータは,ネットワーク全体のトレーニング性能と一致していることを示す。
論文 参考訳(メタデータ) (2024-03-12T07:32:47Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Near-optimal control of dynamical systems with neural ordinary
differential equations [0.0]
ディープラーニングとニューラルネットワークに基づく最適化の最近の進歩は、高次元力学系を含む制御問題を解くのに役立つ方法の開発に寄与している。
まず、時間を通して切り詰められた非切り抜きのバックプロパゲーションが、実行時のパフォーマンスとニューラルネットワークが最適な制御関数を学習する能力にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2022-06-22T14:11:11Z) - Multi-Agent Deep Reinforcement Learning in Vehicular OCC [14.685237010856953]
我々は車載OCCにおけるスペクトル効率最適化手法を提案する。
我々は最適化問題をマルコフ決定プロセス(MDP)としてモデル化し、オンラインで適用可能なソリューションの利用を可能にする。
提案手法の性能を広範囲なシミュレーションにより検証し,提案手法の様々な変種とランダムな手法との比較を行った。
論文 参考訳(メタデータ) (2022-05-05T14:25:54Z) - Optimal Energy Shaping via Neural Approximators [16.879710744315233]
古典的受動性に基づく制御手法の強化として,最適エネルギー整形を導入する。
パッシブコントロールフレームワークのパフォーマンスを調整するための体系的なアプローチはまだ開発されていない。
論文 参考訳(メタデータ) (2021-01-14T10:25:58Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Single-step deep reinforcement learning for open-loop control of laminar
and turbulent flows [0.0]
本研究は,流体力学系の最適化と制御を支援するための深部強化学習(DRL)技術の能力を評価する。
原型ポリシー最適化(PPO)アルゴリズムの新たな"退化"バージョンを組み合わせることで、学習エピソード当たり1回だけシステムを最適化するニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2020-06-04T16:11:26Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
無線ネットワークにおけるリソース割り当てとトランシーバーは、通常最適化問題の解決によって設計される。
本稿では,変数最適化と関数最適化の両問題を解くための教師なし・教師なし学習フレームワークを紹介する。
論文 参考訳(メタデータ) (2020-01-03T11:01:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。