論文の概要: A Simple and Fast Way to Handle Semantic Errors in Transactions
- arxiv url: http://arxiv.org/abs/2412.12493v1
- Date: Tue, 17 Dec 2024 02:47:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:57:40.884052
- Title: A Simple and Fast Way to Handle Semantic Errors in Transactions
- Title(参考訳): トランザクションでセマンティックエラーを処理するためのシンプルで高速な方法
- Authors: Jinghan Zeng, Eugene Wu, Sanjay Krishnan,
- Abstract要約: 本稿では,大規模言語モデル(LLM)が生成するデータベーストランザクションを扱うことに焦点を当てる。
Invariant Satisfaction(I-Confluence)に基づく新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 11.584869171478609
- License:
- Abstract: Many computer systems are now being redesigned to incorporate LLM-powered agents, enabling natural language input and more flexible operations. This paper focuses on handling database transactions created by large language models (LLMs). Transactions generated by LLMs may include semantic errors, requiring systems to treat them as long-lived. This allows for human review and, if the transaction is incorrect, removal from the database history. Any removal action must ensure the database's consistency (the "C" in ACID principles) is maintained throughout the process. We propose a novel middleware framework based on Invariant Satisfaction (I-Confluence), which ensures consistency by identifying and coordinating dependencies between long-lived transactions and new transactions. This middleware buffers suspicious or compensating transactions to manage coordination states. Using the TPC-C benchmark, we evaluate how transaction generation frequency, user reviews, and invariant completeness impact system performance. For system researchers, this study establishes an interactive paradigm between LLMs and database systems, providing an "undoing" mechanism for handling incorrect operations while guaranteeing database consistency. For system engineers, this paper offers a middleware design that integrates removable LLM-generated transactions into existing systems with minimal modifications.
- Abstract(参考訳): 多くのコンピュータシステムはLLMエージェントを組み込むように再設計され、自然言語入力とより柔軟な操作が可能になった。
本稿では,大規模言語モデル(LLM)が生成するデータベーストランザクションを扱うことに焦点を当てる。
LLMが生成したトランザクションにはセマンティックエラーが含まれ、システムはそれらを長期にわたって扱う必要がある。
これにより、人間によるレビューが可能になり、トランザクションが正しくない場合、データベース履歴から削除される。
任意の削除アクションは、プロセス全体を通してデータベースの一貫性(ACID原則の"C")を保証する必要があります。
Invariant Satisfaction (I-Confluence)に基づく新しいミドルウェアフレームワークを提案する。
このミドルウェアは、不審または補償トランザクションをバッファして調整状態を管理する。
TPC-Cベンチマークを用いて,トランザクション生成頻度,ユーザレビュー,不変完全度がシステム性能に与える影響を評価する。
システム研究者にとって、LLMとデータベースシステム間の対話的パラダイムを確立し、データベースの整合性を確保しながら、不正な操作を処理するための「アンディング」メカニズムを提供する。
システムエンジニアに対しては,削除可能なLCM生成トランザクションを最小限の修正で既存のシステムに統合するミドルウェア設計を提案する。
関連論文リスト
- Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
大きな言語モデル(LLM)は、常識的推論と対話的な意思決定において強力な能力を示す。
近年,制御フローなどのコード・アジャセント技術を用いてLCM出力を構造化し,計画性能を向上させる技術が提案されている。
完全コード表現で動的なLEM計画手法であるREPL-Planを提案する。
論文 参考訳(メタデータ) (2024-11-21T04:23:17Z) - DocETL: Agentic Query Rewriting and Evaluation for Complex Document Processing [10.712756715779822]
大規模言語モデル(LLM)は、構造化されていないデータを分析することを約束している。
ユーザ定義操作のためのLLM出力は、最適化されたプロンプトであっても、しばしば不正確である。
本稿では,複雑な文書処理パイプラインを最適化するDocETLを提案する。
論文 参考訳(メタデータ) (2024-10-16T03:22:35Z) - TRANSAGENT: An LLM-Based Multi-Agent System for Code Translation [16.46292795782835]
コード翻訳は、ソフトウェアマイグレーション、システムアブレーション、クロスプラットフォーム開発に不可欠である。
従来のルールベースのメソッドは手書きのルールに依存している。
最近では、LLM(Large Language Models)の進歩により、学習ベースのコード翻訳がさらに強化されている。
本稿では,構文誤りや意味的誤りを解消し,LLMに基づくコード翻訳を強化した新しいマルチエージェントシステムTransagENTを提案する。
論文 参考訳(メタデータ) (2024-09-30T02:53:03Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Reliable, Adaptable, and Attributable Language Models with Retrieval [144.26890121729514]
パラメトリック言語モデル(LM)は大量のWebデータに基づいて訓練されている。
幻覚、新しいデータ分布への適応の困難、妥当性の欠如など、実践的な課題に直面している。
我々は、次世代のLMとしてパラメトリックLMを置き換えるための検索拡張LMを提唱する。
論文 参考訳(メタデータ) (2024-03-05T18:22:33Z) - On Leveraging Large Language Models for Enhancing Entity Resolution: A Cost-efficient Approach [7.996010840316654]
本稿では,Large Language Models (LLMs) を用いた不確実性低減フレームワークを提案する。
LLMは、先進的な言語能力と、広範なデータサイエンスの専門知識を持たない人々に対して大きな利点をもたらす「従量制」モデルに便乗している。
我々は,本手法が効率的かつ効果的であることを示し,実世界のタスクに有望な応用を提供する。
論文 参考訳(メタデータ) (2024-01-07T09:06:58Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z) - A Unified and Efficient Coordinating Framework for Autonomous DBMS
Tuning [34.85351481228439]
既存のMLベースのエージェントを効率的に活用するための統合コーディネートフレームワークを提案する。
機械学習ベースのエージェントを効果的に利用し、ワークロードの実行時間に1.414.1Xのスピードアップでより良い設定を実現できることを示す。
論文 参考訳(メタデータ) (2023-03-10T05:27:23Z) - A Unified Transferable Model for ML-Enhanced DBMS [53.46830627879208]
本稿では,タスク間で伝達可能な知識をキャプチャするマルチタスクトレーニングプロシージャと,db間でのメタ知識を蒸留するプリトレーニングファインチューンプロシージャを用いた統一モデルmtmlfを提案する。
このパラダイムはクラウドDBサービスに適しており、将来的にMLの使用方法に革命をもたらす可能性があると考えています。
論文 参考訳(メタデータ) (2021-05-06T03:31:32Z) - Incorporating BERT into Parallel Sequence Decoding with Adapters [82.65608966202396]
本稿では,2種類のBERTモデルをエンコーダとデコーダとして取り出し,シンプルで軽量なアダプタモジュールを導入し,それらを微調整する。
我々は、ソース側およびターゲット側BERTモデルに含まれる情報を協調的に活用できるフレキシブルで効率的なモデルを得る。
我々のフレームワークは、BERTの双方向および条件独立性を考慮した、Mask-Predictという並列シーケンス復号アルゴリズムに基づいている。
論文 参考訳(メタデータ) (2020-10-13T03:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。