論文の概要: GateLens: A Reasoning-Enhanced LLM Agent for Automotive Software Release Analytics
- arxiv url: http://arxiv.org/abs/2503.21735v2
- Date: Fri, 01 Aug 2025 21:33:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 14:07:56.573949
- Title: GateLens: A Reasoning-Enhanced LLM Agent for Automotive Software Release Analytics
- Title(参考訳): GateLens: 自動車ソフトウェアリリース分析のための推論強化LDMエージェント
- Authors: Arsham Gholamzadeh Khoee, Shuai Wang, Yinan Yu, Robert Feldt, Dhasarathy Parthasarathy,
- Abstract要約: GateLensは、自動車分野のデータ分析のためのLLMベースのシステムである。
遅くて不透明でメンテナンスにコストがかかる従来のマルチエージェントや計画ベースのシステムとは異なり、GateLensはスピード、透明性、信頼性を強調している。
- 参考スコア(独自算出の注目度): 9.549568621873386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring reliable software release decisions is critical in safety-critical domains such as automotive manufacturing. Release validation relies on large tabular datasets, yet manual analysis is slow, costly, and error-prone. While Large Language Models (LLMs) offer promising automation potential, they face challenges in analytical reasoning, structured data handling, and ambiguity resolution. This paper introduces GateLens, an LLM-based system for analyzing tabular data in the automotive domain. GateLens translates natural language queries into Relational Algebra (RA) expressions and generates optimized Python code. Unlike traditional multi-agent or planning-based systems that can be slow, opaque, and costly to maintain, GateLens emphasizes speed, transparency, and reliability. Experimental results show that GateLens outperforms the existing Chain-of-Thought (CoT) + Self-Consistency (SC) based system on real-world datasets, particularly in handling complex and ambiguous queries. Ablation studies confirm the essential role of the RA layer. Industrial deployment shows over 80% reduction in analysis time while maintaining high accuracy across test result interpretation, impact assessment, and release candidate evaluation. GateLens operates effectively in zero-shot settings without requiring few-shot examples or agent orchestration. This work advances deployable LLM system design by identifying key architectural features-intermediate formal representations, execution efficiency, and low configuration overhead-crucial for safety-critical industrial applications.
- Abstract(参考訳): 自動車製造などの安全上重要な領域では、信頼性の高いソフトウェアリリース決定の保証が重要である。
リリースバリデーションは大きな表のデータセットに依存するが、手作業による分析は遅く、コストがかかり、エラーが発生しやすい。
大規模言語モデル(LLM)は将来的な自動化の可能性を秘めているが、分析的推論、構造化データハンドリング、曖昧さの解決といった課題に直面している。
本稿では,自動車分野における表データ解析システムであるGateLensを紹介する。
GateLensは自然言語クエリをRelational Algebra (RA)式に変換し、最適化されたPythonコードを生成する。
遅くて不透明でメンテナンスにコストがかかる従来のマルチエージェントや計画ベースのシステムとは異なり、GateLensはスピード、透明性、信頼性を強調している。
実験の結果,GateLensは実世界のデータセットに基づく既存のChain-of-Thought(CoT)+Self-Consistency(SC)ベースのシステム,特に複雑であいまいなクエリの処理において,優れた性能を示した。
アブレーション研究はRA層の本質的な役割を証明している。
産業展開は、テスト結果の解釈、影響評価、リリース候補評価にまたがって高い精度を維持しながら、分析時間の80%以上を削減している。
GateLensは、ほとんどショットの例やエージェントオーケストレーションを必要とせずに、ゼロショット設定で効果的に動作する。
この作業は、アーキテクチャ上の重要な特徴、中間的な形式表現、実行効率、安全クリティカルな産業アプリケーションのための低構成オーバーヘッドを識別することで、デプロイ可能なLLMシステム設計を前進させる。
関連論文リスト
- VerifyLLM: LLM-Based Pre-Execution Task Plan Verification for Robots [44.99833362998488]
本研究では,シミュレータや実環境で実行する前に,タスクプランを自動的に検証するアーキテクチャを提案する。
このモジュールは、Large Language Modelsの推論機能を使用して、論理的一貫性を評価し、計画の潜在的なギャップを特定する。
我々は,タスク計画の信頼性と効率の向上に寄与し,自律システムにおける堅牢な事前実行検証の必要性に対処する。
論文 参考訳(メタデータ) (2025-07-07T15:31:36Z) - Feature Engineering for Agents: An Adaptive Cognitive Architecture for Interpretable ML Monitoring [2.1205272468688574]
大規模言語モデルに基づくエージェントに特徴工学の原則を適用したMLモニタリングのための認知アーキテクチャを提案する。
決定手順モジュールは、リファクタリング、ブレークダウン、コンパイルという3つの重要なステップを通じて、機能エンジニアリングをシミュレートする。
複数のLCMを用いた実験により, 各種ベースラインと比較して精度が有意に向上し, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2025-06-11T13:48:25Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
大規模言語モデル(LLM)によるコード生成は、ますます本番環境で採用されているが、コード品質の保証には失敗している。
実運用品質のコードを生成するためにLLMにインセンティブを与える強化学習フレームワークであるREALを提案する。
論文 参考訳(メタデータ) (2025-05-28T17:57:47Z) - IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Benchは、多ラウンドの対話シナリオで大規模言語モデルを評価する新しいベンチマークである。
エージェント性能は、最終的な数値出力と人間由来のベースラインを比較して判断する。
最先端のコーディングエージェント(Claude-3.7-thinkingなど)でさえ50%のタスクを成功させ、シングルターンテストでは明らかでない制限を強調している。
論文 参考訳(メタデータ) (2025-05-23T09:37:52Z) - Are You Getting What You Pay For? Auditing Model Substitution in LLM APIs [60.881609323604685]
ブラックボックスAPIを通じてアクセスされるLarge Language Models (LLM)は、信頼の課題をもたらす。
ユーザーは、宣伝されたモデル機能に基づいたサービスの料金を支払う。
プロバイダは、運用コストを削減するために、特定のモデルを安価で低品質の代替品に隠蔽的に置き換えることができる。
この透明性の欠如は、公正性を損なうとともに、信頼を損なうとともに、信頼性の高いベンチマークを複雑にする。
論文 参考訳(メタデータ) (2025-04-07T03:57:41Z) - Reasoning with LLMs for Zero-Shot Vulnerability Detection [0.9208007322096533]
textbfVulnSageは,多種多様な大規模オープンソースソフトウェアプロジェクトから収集した,総合的な評価フレームワークである。
このフレームワークは、関数レベル、ファイルレベル、関数間の複数の粒度解析をサポートする。
Baseline、Chain-of-context、Think、Think & verifyの4つの異なるゼロショットプロンプト戦略を採用している。
論文 参考訳(メタデータ) (2025-03-22T23:59:17Z) - How Robust Are Router-LLMs? Analysis of the Fragility of LLM Routing Capabilities [62.474732677086855]
大規模言語モデル(LLM)ルーティングは,計算コストと性能のバランスをとる上で重要な戦略である。
DSCベンチマークを提案する: Diverse, Simple, and Categorizedは、幅広いクエリタイプでルータのパフォーマンスを分類する評価フレームワークである。
論文 参考訳(メタデータ) (2025-03-20T19:52:30Z) - CASTLE: Benchmarking Dataset for Static Code Analyzers and LLMs towards CWE Detection [2.5228276786940182]
本稿では,異なる手法の脆弱性検出能力を評価するためのベンチマークフレームワークであるCASTLEを紹介する。
我々は,25個のCWEをカバーする250個のマイクロベンチマークプログラムを手作りしたデータセットを用いて,静的解析ツール13,LLM10,形式検証ツール2を評価した。
論文 参考訳(メタデータ) (2025-03-12T14:30:05Z) - Complex LLM Planning via Automated Heuristics Discovery [48.07520536415374]
複雑な計画タスクのための大規模言語モデル(LLM)の強化を検討する。
我々は,LLMがガイドタイム検索の関数を明示的に生成できる新しい手法である自動推論発見(AutoHD)を提案する。
提案手法はモデルトレーニングや微調整を必要とせず,LLMが生成する関数の明示的な定義は推論過程の解釈可能性と洞察を与える。
論文 参考訳(メタデータ) (2025-02-26T16:52:31Z) - AIRepr: An Analyst-Inspector Framework for Evaluating Reproducibility of LLMs in Data Science [5.064778712920176]
大規模言語モデル(LLM)は、実行可能なコード生成を通じてデータ分析を自動化するために、ますます使われるようになっている。
LLM 生成データ解析の $itRepr$oducibility を自動的に評価し,改善するための $itA$nalyst - $itI$nspector フレームワークである $itAIRepr を提示する。
論文 参考訳(メタデータ) (2025-02-23T01:15:50Z) - AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
LLMによって駆動されるPSMの原理に基づく自動浸透試験エージェントであるAutoPTを紹介する。
以上の結果から, AutoPT は GPT-4o ミニモデル上でのベースラインフレームワーク ReAct よりも優れていた。
論文 参考訳(メタデータ) (2024-11-02T13:24:30Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト is Key" (CiK) は、数値データを多種多様なテキストコンテキストと組み合わせた予測ベンチマークである。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
提案手法は,提案するベンチマークにおいて,他の試験手法よりも優れる簡易かつ効果的なLCMプロンプト法である。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - VulnLLMEval: A Framework for Evaluating Large Language Models in Software Vulnerability Detection and Patching [0.9208007322096533]
大きな言語モデル(LLM)は、コード翻訳のようなタスクにおいて有望であることを示している。
本稿では,C コードの脆弱性を特定し,パッチする際の LLM の性能を評価するためのフレームワーク VulnLLMEval を紹介する。
私たちの研究には、Linuxカーネルから抽出された307の現実世界の脆弱性が含まれている。
論文 参考訳(メタデータ) (2024-09-16T22:00:20Z) - AIvril: AI-Driven RTL Generation With Verification In-The-Loop [0.7831852829409273]
LLM(Large Language Models)は、複雑な自然言語処理タスクを実行できる計算モデルである。
本稿では,RTL対応LLMの精度と信頼性を高めるためのフレームワークであるAIvrilを紹介する。
論文 参考訳(メタデータ) (2024-09-03T15:07:11Z) - Outside the Comfort Zone: Analysing LLM Capabilities in Software Vulnerability Detection [9.652886240532741]
本稿では,ソースコードの脆弱性検出における大規模言語モデルの機能について,徹底的に解析する。
我々は6つの汎用LCMに対して脆弱性検出を特別に訓練した6つのオープンソースモデルの性能を評価する。
論文 参考訳(メタデータ) (2024-08-29T10:00:57Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - AutoAct: Automatic Agent Learning from Scratch for QA via Self-Planning [54.47116888545878]
AutoActはQAのための自動エージェント学習フレームワークである。
大規模アノテートデータやクローズドソースモデルからの合成計画軌道は依存していない。
論文 参考訳(メタデータ) (2024-01-10T16:57:24Z) - Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities [12.82645410161464]
5つの異なるセキュリティデータセットから5,000のコードサンプルに対して、16の事前学習された大規模言語モデルの有効性を評価する。
全体として、LSMは脆弱性の検出において最も穏やかな効果を示し、データセットの平均精度は62.8%、F1スコアは0.71である。
ステップバイステップ分析を含む高度なプロンプト戦略は、F1スコア(平均0.18まで)で実世界のデータセット上でのLLMのパフォーマンスを著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-11-16T13:17:20Z) - Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models [75.75038268227554]
Self-Checkerはファクトチェックを容易にするプラグインとプレイモジュールからなるフレームワークである。
このフレームワークは、低リソース環境でファクトチェックシステムを構築するための、高速で効率的な方法を提供する。
論文 参考訳(メタデータ) (2023-05-24T01:46:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。