論文の概要: a2z-1 for Multi-Disease Detection in Abdomen-Pelvis CT: External Validation and Performance Analysis Across 21 Conditions
- arxiv url: http://arxiv.org/abs/2412.12629v1
- Date: Tue, 17 Dec 2024 07:44:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 14:00:11.798919
- Title: a2z-1 for Multi-Disease Detection in Abdomen-Pelvis CT: External Validation and Performance Analysis Across 21 Conditions
- Title(参考訳): a2z-1による腹部骨盤CTのマルチ放電検出:21条件における外部バリデーションと性能解析
- Authors: Pranav Rajpurkar, Julian N. Acosta, Siddhant Dogra, Jaehwan Jeong, Deepanshu Jindal, Michael Moritz, Samir Rajpurkar,
- Abstract要約: A2z-1(A2z-1)は、腹部骨盤CTスキャンを21の時間感度で動作可能な発見のために分析するために設計された人工知能(AI)モデルである。
大規模な振り返り分析では、21の条件で平均0.931のAUCが示される。
- 参考スコア(独自算出の注目度): 2.784981126423379
- License:
- Abstract: We present a comprehensive evaluation of a2z-1, an artificial intelligence (AI) model designed to analyze abdomen-pelvis CT scans for 21 time-sensitive and actionable findings. Our study focuses on rigorous assessment of the model's performance and generalizability. Large-scale retrospective analysis demonstrates an average AUC of 0.931 across 21 conditions. External validation across two distinct health systems confirms consistent performance (AUC 0.923), establishing generalizability to different evaluation scenarios, with notable performance in critical findings such as small bowel obstruction (AUC 0.958) and acute pancreatitis (AUC 0.961). Subgroup analysis shows consistent accuracy across patient sex, age groups, and varied imaging protocols, including different slice thicknesses and contrast administration types. Comparison of high-confidence model outputs to radiologist reports reveals instances where a2z-1 identified overlooked findings, suggesting potential for quality assurance applications.
- Abstract(参考訳): 本稿では,腹部骨盤CTスキャンを21の時間感受性,動作性に配慮した人工知能(AI)モデルであるa2z-1の包括的評価を行った。
本研究は,モデルの性能と一般化可能性の厳密な評価に焦点を当てた。
大規模な振り返り分析では、21の条件で平均0.931のAUCが示される。
2つの異なる健康システムに対する外的検証は、一貫したパフォーマンス(AUC 0.923)を確認し、異なる評価シナリオに対する一般化性を確立し、小腸閉塞(AUC 0.958)や急性膵炎(AUC 0.961)などの重要な所見で顕著なパフォーマンスを示した。
サブグループ分析は、患者セックス、年齢グループ、および異なるスライス厚さとコントラスト管理タイプを含む様々なイメージングプロトコル間で一貫した精度を示す。
高信頼モデル出力と放射線学報告の比較では、a2z-1が見落とされ、品質保証の応用の可能性を示している。
関連論文リスト
- Improved Esophageal Varices Assessment from Non-Contrast CT Scans [15.648325577912608]
食道静脈瘤(EV)は門脈圧亢進による重篤な健康上の問題である。
非造影CT(non-contrast Computed Tomography, NC-CT)は, 安価で非侵襲的な画像モダリティであるにもかかわらず, EV評価のための主要な臨床診断ツールとして完全には受け入れられていない。
我々は,NC-CTスキャンにおける重要な臓器機能の解析を改良し,EVを効果的に評価するMulti-Organ-cOhesion-Network(MOON)を提案する。
論文 参考訳(メタデータ) (2024-07-18T06:49:10Z) - Incorporating Anatomical Awareness for Enhanced Generalizability and Progression Prediction in Deep Learning-Based Radiographic Sacroiliitis Detection [0.8248058061511542]
本研究の目的は, 深層学習モデルに解剖学的認識を取り入れることで, 一般化性を高め, 疾患進行の予測を可能にするかを検討することである。
モデルの性能は, 受信機動作特性曲線(AUC)下の領域, 精度, 感度, 特異性を用いて比較した。
論文 参考訳(メタデータ) (2024-05-12T20:02:25Z) - Artificial intelligence for abnormality detection in high volume neuroimaging: a systematic review and meta-analysis [0.5934394862891423]
神経画像における異常を検出する人工知能(AI)モデルを評価するほとんどの研究は、非表現的な患者コホートで試験されている。
目的は、診断テストの精度を判定し、第一線高ボリュームのニューロイメージングタスクを実行するAIモデルの使用を支持する証拠を要約することであった。
論文 参考訳(メタデータ) (2024-05-09T10:12:17Z) - Reconsidering evaluation practices in modular systems: On the
propagation of errors in MRI prostate cancer detection [0.0]
人工知能(AI)システムは、臨床的に重要な(csPCa)および非臨床的に重要な(ncsPCa)病変の分類と分類によって放射線学的評価を支援することができる
本結果は,システムに関わるすべてのサブモジュールを考慮し,全体的評価の妥当性を示すものである。
論文 参考訳(メタデータ) (2023-09-15T13:15:09Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Incremental Value and Interpretability of Radiomics Features of Both
Lung and Epicardial Adipose Tissue for Detecting the Severity of COVID-19
Infection [4.772846544299196]
現在のセグメンテーション法は位置情報を考慮していない。
新型コロナウイルス(COVID-19)の検出は、解釈可能性を制限するEATラジオミクスの特徴に対する厳格な考慮を欠いている。
本研究は、新型コロナウイルス感染症の重症度を検出するために、EATおよび肺からの放射能の特徴を用いることを検討する。
論文 参考訳(メタデータ) (2023-01-29T03:31:51Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
本研究は、新型コロナウイルスの肺病変の同定、セグメント化、定量化のために人工知能(AI)を活用することを目的とする。
2つのU-netのカスケードをベースとした自動解析パイプラインLungQuantシステムを開発した。
LungQuantシステムにおけるCT-Severity Score(CT-SS)の精度も評価した。
論文 参考訳(メタデータ) (2021-05-06T10:21:28Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
CT画像を用いた半監視型COVID-19病変分割のための不確実性誘導型二重一貫性学習ネットワーク(UDC-Net)を提案する。
提案した UDC-Net は,Dice の完全教師方式を 6.3% 向上させ,他の競合的半監督方式を有意なマージンで上回っている。
論文 参考訳(メタデータ) (2021-04-07T16:23:35Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
我々は、集中治療室入院の必要性を予測するために、人口統計、バイタルサイン、実験室の所見から、肺不透明度の放射能と非画像の特徴を組み合わせる。
また, 地域性肺炎を含む他の肺疾患にも適用できるが, 地域性肺炎に限らない。
論文 参考訳(メタデータ) (2020-07-20T19:08:50Z) - Automated Quantification of CT Patterns Associated with COVID-19 from
Chest CT [48.785596536318884]
提案法は,非造影胸部CTを入力として,病変,肺,葉を3次元に分割する。
この方法では、肺の重症度と葉の関与度を2つの組み合わせて測定し、COVID-19の異常度と高不透明度の存在度を定量化する。
このアルゴリズムの評価は、カナダ、ヨーロッパ、米国からの200人の参加者(感染者100人、健康管理100人)のCTで報告されている。
論文 参考訳(メタデータ) (2020-04-02T21:49:14Z) - Severity Assessment of Coronavirus Disease 2019 (COVID-19) Using
Quantitative Features from Chest CT Images [54.919022945740515]
本研究の目的は,胸部CT画像に基づく新型コロナウイルスの重症度自動評価(非重症度または重症度)を実現することである。
ランダム・フォレスト(RF)モデルは、量的特徴に基づいて重症度(非重症度または重症度)を評価するために訓練される。
新型コロナウイルスの重症度を反映する可能性のあるいくつかの定量的特徴が明らかになった。
論文 参考訳(メタデータ) (2020-03-26T15:49:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。