論文の概要: Reconsidering evaluation practices in modular systems: On the
propagation of errors in MRI prostate cancer detection
- arxiv url: http://arxiv.org/abs/2309.08381v1
- Date: Fri, 15 Sep 2023 13:15:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-18 14:44:16.786841
- Title: Reconsidering evaluation practices in modular systems: On the
propagation of errors in MRI prostate cancer detection
- Title(参考訳): モジュラーシステムにおける評価手法の再検討:MRI前立腺癌検出における誤差の伝播について
- Authors: Erlend Sortland Rolfsnes, Philip Thangngat, Trygve Eftest{\o}l, Tobias
Nordstr\"om, Fredrik J\"aderling, Martin Eklund, Alvaro Fernandez-Quilez
- Abstract要約: 人工知能(AI)システムは、臨床的に重要な(csPCa)および非臨床的に重要な(ncsPCa)病変の分類と分類によって放射線学的評価を支援することができる
本結果は,システムに関わるすべてのサブモジュールを考慮し,全体的評価の妥当性を示すものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic resonance imaging has evolved as a key component for prostate cancer
(PCa) detection, substantially increasing the radiologist workload. Artificial
intelligence (AI) systems can support radiological assessment by segmenting and
classifying lesions in clinically significant (csPCa) and non-clinically
significant (ncsPCa). Commonly, AI systems for PCa detection involve an
automatic prostate segmentation followed by the lesion detection using the
extracted prostate. However, evaluation reports are typically presented in
terms of detection under the assumption of the availability of a highly
accurate segmentation and an idealistic scenario, omitting the propagation of
errors between modules. For that purpose, we evaluate the effect of two
different segmentation networks (s1 and s2) with heterogeneous performances in
the detection stage and compare it with an idealistic setting (s1:89.90+-2.23
vs 88.97+-3.06 ncsPCa, P<.001, 89.30+-4.07 and 88.12+-2.71 csPCa, P<.001). Our
results depict the relevance of a holistic evaluation, accounting for all the
sub-modules involved in the system.
- Abstract(参考訳): 磁気共鳴イメージングは前立腺癌(PCa)検出のキーコンポーネントとして進化し、放射線学の作業量を大幅に増加させた。
人工知能(AI)システムは、臨床的に重要な (csPCa) と非臨床的に重要な (ncsPCa) の病変を分類し分類することで、放射線学的評価をサポートすることができる。
一般的に、PCa検出のためのAIシステムは自動前立腺セグメンテーションを伴い、その後抽出された前立腺を用いた病変検出を行う。
しかしながら、評価報告は、高度に正確なセグメンテーションと理想主義的なシナリオの可用性を前提として、モジュール間のエラーの伝播を省略した検出の観点で示されるのが一般的である。
そこで,検出段階での不均一な性能を持つ2つのセグメンテーションネットワーク (s1, s2) の効果を評価し, 理想的設定 (s1:89.90+-2.23 vs 88.97+-3.06 ncsPCa, P<.001, 89.30+-4.07, 88.12+-2.71 csPCa, P<.001) と比較した。
本研究は,システムに関わるすべてのサブモジュールを考慮し,全体的評価の妥当性を示す。
関連論文リスト
- Deep Radiomics Detection of Clinically Significant Prostate Cancer on Multicenter MRI: Initial Comparison to PI-RADS Assessment [0.0]
本研究は,2010年から2020年の間に取得した4つのデータセットから615例(平均年齢63.1+/-7歳)のバイパラメトリック(T2WおよびDW)前立腺MRI配列を分析した。
深部放射線学の機械学習モデルは, 病変レベルではなく, csPCa検出において, PI-RADSアセスメントに匹敵する性能を示した。
論文 参考訳(メタデータ) (2024-10-21T17:41:58Z) - Assessing the performance of deep learning-based models for prostate
cancer segmentation using uncertainty scores [1.0499611180329804]
目的は前立腺がんの検出と診断のワークフローを改善することである。
最高性能モデルはアテンション R2U-Net で、連合(IoU)の平均インターセクションは76.3%、Dice similarity Coefficient(DSC)は全ゾーンのセグメンテーションの85%を達成している。
論文 参考訳(メタデータ) (2023-08-09T01:38:58Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Lesion detection in contrast enhanced spectral mammography [0.0]
近年の乳房画像解析のためのニューラルネットワークモデルの出現は、コンピュータ支援診断における画期的な進歩である。
本研究は,CESMリコンビネート画像に対する深層学習に基づくコンピュータ支援診断開発を提案し,病変の検出と症例の分類を行う。
論文 参考訳(メタデータ) (2022-07-20T06:49:02Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Fully Automatic Deep Learning Framework for Pancreatic Ductal
Adenocarcinoma Detection on Computed Tomography [0.0]
早期発見は膵管腺癌(PDAC)の予後を改善する
現在のモデルでは、小さな(2cm)病変の特定に失敗している。
深層学習モデルを用いてPDAC検出のための自動フレームワークを開発した。
論文 参考訳(メタデータ) (2021-11-30T13:59:46Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
3次元医用画像分割作業において,Deep Learning (DL) 手法を体系的に評価した。
本手法は放射線外科治療プロセスに統合され,臨床ワークフローに直接影響を及ぼす。
論文 参考訳(メタデータ) (2021-08-21T16:15:40Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
そこで本研究では,病変からスライスまでのマッピング機能に基づく,病変レベルのコスト感受性損失と付加的なスライスレベルの損失を組み込んだ新しいPCa検出ネットワークを提案する。
1) 病変レベルFNRを0.19から0.10に, 病変レベルFPRを1.03から0.66に減らした。
論文 参考訳(メタデータ) (2021-06-04T09:51:27Z) - End-to-end Prostate Cancer Detection in bpMRI via 3D CNNs: Effect of
Attention Mechanisms, Clinical Priori and Decoupled False Positive Reduction [0.0]
本研究では、Bi-parametric MR Imaging (bpMRI) における臨床的に重要な前立腺癌(csa)の自動局在化のための新しい3Dコンピュータ支援診断モデルを提案する。
ディープアテンションメカニズムはその検出ネットワークを駆動し、多解像度で健全な構造と高度に識別可能な特徴次元をターゲットにしている。
CNNベースのモデルは、独立コホートにおける生検で確認された悪性腫瘍を検出するために訓練することができる。
論文 参考訳(メタデータ) (2021-01-08T22:59:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。