LLM-based Discriminative Reasoning for Knowledge Graph Question Answering
- URL: http://arxiv.org/abs/2412.12643v1
- Date: Tue, 17 Dec 2024 08:07:16 GMT
- Title: LLM-based Discriminative Reasoning for Knowledge Graph Question Answering
- Authors: Mufan Xu, Kehai Chen, Xuefeng Bai, Muyun Yang, Tiejun Zhao, Min Zhang,
- Abstract summary: Large language models (LLMs) based on generative pre-trained Transformer have achieved remarkable performance on knowledge graph question-answering tasks.
We propose a novel LLM-based Discriminative Reasoning (LDR) method to explicitly model the subgraph retrieval and answer inference process.
- Score: 42.277864969014296
- License:
- Abstract: Large language models (LLMs) based on generative pre-trained Transformer have achieved remarkable performance on knowledge graph question-answering (KGQA) tasks. However, LLMs often produce ungrounded subgraph planning or reasoning results in KGQA due to the hallucinatory behavior brought by the generative paradigm, which may hinder the advancement of the LLM-based KGQA model. To deal with the issue, we propose a novel LLM-based Discriminative Reasoning (LDR) method to explicitly model the subgraph retrieval and answer inference process. By adopting discriminative strategies, the proposed LDR method not only enhances the capability of LLMs to retrieve question-related subgraphs but also alleviates the issue of ungrounded reasoning brought by the generative paradigm of LLMs. Experimental results show that the proposed approach outperforms multiple strong comparison methods, along with achieving state-of-the-art performance on two widely used WebQSP and CWQ benchmarks.
Related papers
- Hint Marginalization for Improved Reasoning in Large Language Models [24.67507932821155]
We present Marginalization, a novel and principled algorithmic framework to enhance the reasoning capabilities of Large Language Models (LLMs)
Our approach can be viewed as an iterative sampling strategy for forming a Monte Carlo approximation of an underlying distribution of answers.
Empirical evaluation on several benchmark datasets for arithmetic reasoning demonstrates the superiority of the proposed approach.
arXiv Detail & Related papers (2024-12-17T19:45:53Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks.
We propose textbfRAG-Star, a novel RAG approach that integrates retrieved information to guide the tree-based deliberative reasoning process.
Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods.
arXiv Detail & Related papers (2024-12-17T13:05:36Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
Current research enhances the reasoning performance of Large Language Models (LLMs) by sampling multiple reasoning chains and ensembling based on the answer frequency.
This approach fails in scenarios where the correct answers are in the minority.
We introduce a hierarchical reasoning aggregation framework AoR, which selects answers based on the evaluation of reasoning chains.
arXiv Detail & Related papers (2024-05-21T17:12:19Z) - Causal Prompting: Debiasing Large Language Model Prompting based on Front-Door Adjustment [32.12998469814097]
A novel causal prompting method based on front-door adjustment is proposed to effectively mitigate Large Language Models (LLMs) biases.
Experimental results show that the proposed causal prompting approach achieves excellent performance across seven natural language processing datasets.
arXiv Detail & Related papers (2024-03-05T07:47:34Z) - An Enhanced Prompt-Based LLM Reasoning Scheme via Knowledge Graph-Integrated Collaboration [7.3636034708923255]
This study proposes a collaborative training-free reasoning scheme involving tight cooperation between Knowledge Graph (KG) and Large Language Models (LLMs)
Through such a cooperative approach, our scheme achieves more reliable knowledge-based reasoning and facilitates the tracing of the reasoning results.
arXiv Detail & Related papers (2024-02-07T15:56:17Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
This paper proposes Knowledge Graph-based Retrofitting (KGR) to mitigate factual hallucination during the reasoning process.
Experiments show that KGR can significantly improve the performance of LLMs on factual QA benchmarks.
arXiv Detail & Related papers (2023-11-22T11:08:38Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.