LLM-based Discriminative Reasoning for Knowledge Graph Question Answering
- URL: http://arxiv.org/abs/2412.12643v1
- Date: Tue, 17 Dec 2024 08:07:16 GMT
- Title: LLM-based Discriminative Reasoning for Knowledge Graph Question Answering
- Authors: Mufan Xu, Kehai Chen, Xuefeng Bai, Muyun Yang, Tiejun Zhao, Min Zhang,
- Abstract summary: Large language models (LLMs) based on generative pre-trained Transformer have achieved remarkable performance on knowledge graph question-answering tasks.<n>We propose a novel LLM-based Discriminative Reasoning (LDR) method to explicitly model the subgraph retrieval and answer inference process.
- Score: 42.277864969014296
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Large language models (LLMs) based on generative pre-trained Transformer have achieved remarkable performance on knowledge graph question-answering (KGQA) tasks. However, LLMs often produce ungrounded subgraph planning or reasoning results in KGQA due to the hallucinatory behavior brought by the generative paradigm, which may hinder the advancement of the LLM-based KGQA model. To deal with the issue, we propose a novel LLM-based Discriminative Reasoning (LDR) method to explicitly model the subgraph retrieval and answer inference process. By adopting discriminative strategies, the proposed LDR method not only enhances the capability of LLMs to retrieve question-related subgraphs but also alleviates the issue of ungrounded reasoning brought by the generative paradigm of LLMs. Experimental results show that the proposed approach outperforms multiple strong comparison methods, along with achieving state-of-the-art performance on two widely used WebQSP and CWQ benchmarks.
Related papers
- Memory-augmented Query Reconstruction for LLM-based Knowledge Graph Reasoning [45.74704900487982]
Large language models (LLMs) have achieved remarkable performance on knowledge graph question answering tasks.
We propose Memory-augmented Query Reconstruction for LLM-based Knowledge Graph Reasoning (MemQ) to decouple LLM from tool invocation tasks.
MemQ achieves state-of-the-art performance on widely used benchmarks WebQSP and CWQ.
arXiv Detail & Related papers (2025-03-07T07:28:32Z) - Prompting Strategies for Enabling Large Language Models to Infer Causation from Correlation [68.58373854950294]
We focus on causal reasoning and address the task of establishing causal relationships based on correlation information.
We introduce a prompting strategy for this problem that breaks the original task into fixed subquestions.
We evaluate our approach on an existing causal benchmark, Corr2Cause.
arXiv Detail & Related papers (2024-12-18T15:32:27Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks.<n>We propose textbfRAG-Star, a novel RAG approach that integrates retrieved information to guide the tree-based deliberative reasoning process.<n>Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods.
arXiv Detail & Related papers (2024-12-17T13:05:36Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
Current research enhances the reasoning performance of Large Language Models (LLMs) by sampling multiple reasoning chains and ensembling based on the answer frequency.
This approach fails in scenarios where the correct answers are in the minority.
We introduce a hierarchical reasoning aggregation framework AoR, which selects answers based on the evaluation of reasoning chains.
arXiv Detail & Related papers (2024-05-21T17:12:19Z) - RankPrompt: Step-by-Step Comparisons Make Language Models Better Reasoners [38.30539869264287]
Large Language Models (LLMs) have achieved impressive performance across various reasoning tasks.
However, even state-of-the-art LLMs such as ChatGPT are prone to logical errors during their reasoning processes.
We introduce RankPrompt, a new prompting method that enables LLMs to self-rank their responses without additional resources.
arXiv Detail & Related papers (2024-03-19T02:34:18Z) - Regression-aware Inference with LLMs [52.764328080398805]
We show that an inference strategy can be sub-optimal for common regression and scoring evaluation metrics.
We propose alternate inference strategies that estimate the Bayes-optimal solution for regression and scoring metrics in closed-form from sampled responses.
arXiv Detail & Related papers (2024-03-07T03:24:34Z) - Causal Prompting: Debiasing Large Language Model Prompting based on Front-Door Adjustment [32.12998469814097]
A novel causal prompting method based on front-door adjustment is proposed to effectively mitigate Large Language Models (LLMs) biases.<n> Experimental results show that the proposed causal prompting approach achieves excellent performance across seven natural language processing datasets.
arXiv Detail & Related papers (2024-03-05T07:47:34Z) - Reinforcement Replaces Supervision: Query focused Summarization using
Deep Reinforcement Learning [43.123290672073814]
We deal with systems that generate summaries from document(s) based on a query.
Motivated by the insight that Reinforcement Learning (RL) provides a generalization to Supervised Learning (SL) for Natural Language Generation, we use an RL-based approach for this task.
We develop multiple Policy Gradient networks, trained on various reward signals: ROUGE, BLEU, and Semantic Similarity.
arXiv Detail & Related papers (2023-11-29T10:38:16Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
This paper proposes Knowledge Graph-based Retrofitting (KGR) to mitigate factual hallucination during the reasoning process.
Experiments show that KGR can significantly improve the performance of LLMs on factual QA benchmarks.
arXiv Detail & Related papers (2023-11-22T11:08:38Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
Large language models (LLMs) have recently demonstrated their impressive ability to provide context-aware responses via text.
This ability could potentially be used to predict plausible solutions in sequential decision making tasks pertaining to pattern completion.
We introduce LaGR, which uses this predictive ability of LLMs to propose solutions to tasks that have been partially completed by a primary reinforcement learning (RL) agent.
arXiv Detail & Related papers (2023-08-21T02:07:35Z) - KECP: Knowledge Enhanced Contrastive Prompting for Few-shot Extractive
Question Answering [28.18555591429343]
We propose a novel framework named Knowledge Enhanced Contrastive Prompt-tuning (KECP)
Instead of adding pointer heads to PLMs, we transform the task into a non-autoregressive Masked Language Modeling (MLM) generation problem.
Our method consistently outperforms state-of-the-art approaches in few-shot settings by a large margin.
arXiv Detail & Related papers (2022-05-06T08:31:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.