論文の概要: Language Models as Continuous Self-Evolving Data Engineers
- arxiv url: http://arxiv.org/abs/2412.15151v1
- Date: Thu, 19 Dec 2024 18:28:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:33:15.785597
- Title: Language Models as Continuous Self-Evolving Data Engineers
- Title(参考訳): 継続的自己進化型データエンジニアとしての言語モデル
- Authors: Peidong Wang, Ming Wang, Zhiming Ma, Xiaocui Yang, Shi Feng, Daling Wang, Yifei Zhang,
- Abstract要約: 大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示している。
本稿では, LLM がデータの自動生成, クリーニング, レビュー, 注釈付けにより, 自己学習を可能にする新しいパラダイムを提案する。
我々のアプローチは、LLMが継続的自己進化型データエンジニアとして機能することを示し、トレーニング後のデータ構築プロセスの時間とコストを大幅に削減する。
- 参考スコア(独自算出の注目度): 31.918542131847726
- License:
- Abstract: Large Language Models (LLMs) have demonstrated remarkable capabilities on various tasks, while the further evolvement is limited to the lack of high-quality training data. In addition, traditional training approaches rely too much on expert-labeled data, setting an upper limit on the performance of LLMs. To address this issue, we propose a novel paradigm that enables LLMs to train itself by autonomously generating, cleaning, reviewing, and annotating data with preference information, named LANCE. Our approach demonstrates that LLMs can serve as continuous self-evolving data engineers, significantly reducing the time and cost of the post-training data construction process. Through iterative fine-tuning on different variants of the Qwen2, we validate the effectiveness of LANCE across various tasks, showing that it can continuously improve model performance and maintain high-quality data generation. Across eight benchmark dimensions, LANCE resulted in an average score enhancement of 3.36 for Qwen2-7B and 2.70 for Qwen2-7B-Instruct. This training paradigm with autonomous data construction not only reduces the reliance on human experts or external models but also ensures that the data aligns with human values and preferences, paving the way for the development of future superintelligent systems that can exceed human capabilities.
- Abstract(参考訳): 大規模言語モデル(LLM)は様々なタスクにおいて顕著な能力を示しており、さらなる進化は高品質なトレーニングデータの欠如に限られている。
加えて、従来のトレーニングアプローチは専門家ラベル付きデータに大きく依存しすぎており、LLMのパフォーマンスに上限を設けている。
この問題に対処するために,LANCE という名称の好み情報を用いたデータの自動生成,クリーニング,レビュー,注釈付けにより,LLM の学習を可能にする新しいパラダイムを提案する。
我々のアプローチは、LLMが継続的自己進化型データエンジニアとして機能することを示し、トレーニング後のデータ構築プロセスの時間とコストを大幅に削減する。
Qwen2の様々な変種を反復的に微調整することで、様々なタスクにおけるLANCEの有効性を検証し、モデル性能を継続的に改善し、高品質なデータ生成を維持できることを示す。
8つのベンチマーク次元で、LANCEはQwen2-7Bの平均スコアを3.36、Qwen2-7B-Instructは2.70とした。
この自律的なデータ構築による訓練パラダイムは、人間の専門家や外部モデルへの依存を減らすだけでなく、データが人間の価値観や嗜好と整合することを保証する。
関連論文リスト
- Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - Rethinking Data Synthesis: A Teacher Model Training Recipe with Interpretation [12.736045604858738]
大規模言語モデル(LLM)訓練の最近の進歩は、多種多様な高品質な命令データの必要性を強調している。
データ生成のためのモデルを具体的に訓練する方法を検討することにより、 textbfNOMAD というパラダイムシフトを提案する。
論文 参考訳(メタデータ) (2024-10-27T07:38:39Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
本稿では,SPIN(Self-Play fIne-tuNing)と呼ばれるファインチューニング手法を提案する。
SPINの中心には自己再生機構があり、LLMは自身のインスタンスと対戦することでその能力を洗練させる。
このことは、自己プレイの約束に光を当て、熟練した相手を必要とせずに、LSMにおける人間レベルのパフォーマンスの達成を可能にする。
論文 参考訳(メタデータ) (2024-01-02T18:53:13Z) - INGENIOUS: Using Informative Data Subsets for Efficient Pre-Training of
Language Models [40.54353850357839]
トレーニングコーパスの高度に代表的なサブセットを選択するために、サブモジュラー最適化を利用する方法を示す。
その結果,完全学習モデルの性能の最大$sim99%が得られた。
論文 参考訳(メタデータ) (2023-05-11T09:24:41Z) - DQI: Measuring Data Quality in NLP [22.54066527822898]
データ品質指標(DQI)の一般的な式を導入し、データセット作成者が望ましくないバイアスのないデータセットを作成するのを支援する。
SNLIデータセットを用いてトレーニングしたモデルが,分散タスクの外部に一般化できることが示される。
論文 参考訳(メタデータ) (2020-05-02T12:34:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。