algoTRIC: Symmetric and asymmetric encryption algorithms for Cryptography -- A comparative analysis in AI era
- URL: http://arxiv.org/abs/2412.15237v1
- Date: Thu, 12 Dec 2024 16:25:39 GMT
- Title: algoTRIC: Symmetric and asymmetric encryption algorithms for Cryptography -- A comparative analysis in AI era
- Authors: Naresh Kshetri, Mir Mehedi Rahman, Md Masud Rana, Omar Faruq Osama, James Hutson,
- Abstract summary: This paper presents a comparative analysis of symmetric (SE) and asymmetric encryption (AE) algorithms.
It focuses on their role in securing sensitive information in AI-driven environments.
The paper concludes by addressing the security concerns that encryption algorithms must tackle in the age of AI.
- Score: 0.0
- License:
- Abstract: The increasing integration of artificial intelligence (AI) within cybersecurity has necessitated stronger encryption methods to ensure data security. This paper presents a comparative analysis of symmetric (SE) and asymmetric encryption (AE) algorithms, focusing on their role in securing sensitive information in AI-driven environments. Through an in-depth study of various encryption algorithms such as AES, RSA, and others, this research evaluates the efficiency, complexity, and security of these algorithms within modern cybersecurity frameworks. Utilizing both qualitative and quantitative analysis, this research explores the historical evolution of encryption algorithms and their growing relevance in AI applications. The comparison of SE and AE algorithms focuses on key factors such as processing speed, scalability, and security resilience in the face of evolving threats. Special attention is given to how these algorithms are integrated into AI systems and how they manage the challenges posed by large-scale data processing in multi-agent environments. Our results highlight that while SE algorithms demonstrate high-speed performance and lower computational demands, AE algorithms provide superior security, particularly in scenarios requiring enhanced encryption for AI-based networks. The paper concludes by addressing the security concerns that encryption algorithms must tackle in the age of AI and outlines future research directions aimed at enhancing encryption techniques for cybersecurity.
Related papers
- Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
computational safety is a mathematical framework that enables the quantitative assessment, formulation, and study of safety challenges in GenAI.
We show how sensitivity analysis and loss landscape analysis can be used to detect malicious prompts with jailbreak attempts.
We discuss key open research challenges, opportunities, and the essential role of signal processing in computational AI safety.
arXiv Detail & Related papers (2025-02-18T02:26:50Z) - Cryptanalysis via Machine Learning Based Information Theoretic Metrics [58.96805474751668]
We propose two novel applications of machine learning (ML) algorithms to perform cryptanalysis on any cryptosystem.
These algorithms can be readily applied in an audit setting to evaluate the robustness of a cryptosystem.
We show that our classification model correctly identifies the encryption schemes that are not IND-CPA secure, such as DES, RSA, and AES ECB, with high accuracy.
arXiv Detail & Related papers (2025-01-25T04:53:36Z) - Exploring AI-Enabled Cybersecurity Frameworks: Deep-Learning Techniques, GPU Support, and Future Enhancements [0.4419843514606336]
Emerging cybersecurity systems are incorporating AI techniques, specifically deep-learning algorithms, to enhance their ability to detect incidents, analyze alerts, and respond to events.
While these techniques offer a promising approach to combating dynamic security threats, they often require significant computational resources.
We have identified a total of emphtwo deep-learning algorithms that are utilized by emphthree out of 38 selected cybersecurity frameworks.
arXiv Detail & Related papers (2024-12-17T08:14:12Z) - Deep Learning and Chaos: A combined Approach To Image Encryption and Decryption [1.8749305679160366]
We introduce a novel image encryption and decryption algorithm using hyperchaotic signals from the novel 3D hyperchaotic map, 2D memristor map, Convolutional Neural Network (CNN)
The robustness of the encryption algorithm is shown by key sensitivity analysis, i.e., the average sensitivity of the algorithm to key elements.
arXiv Detail & Related papers (2024-06-24T16:56:22Z) - Lightweight Cryptanalysis of IoT Encryption Algorithms : Is Quota Sampling the Answer? [0.0]
Two well-known lightweight algorithms are SIMON and SIMECK which have been specifically designed for use on resource-constrained IoT devices.
It is necessary to test these algorithms for resilience against differential cryptanalysis attacks.
In this paper, we introduce Versatile Investigative Sampling Technique for Advanced Cryptanalysis.
arXiv Detail & Related papers (2024-04-12T00:08:39Z) - Cryptanalysis and improvement of multimodal data encryption by
machine-learning-based system [0.0]
encryption algorithms to accommodate varied requirements of this field.
Best approach to analyzing an encryption algorithm is to identify a practical and efficient technique to break it.
arXiv Detail & Related papers (2024-02-24T10:02:21Z) - Deep-Unfolding for Next-Generation Transceivers [49.338084953253755]
The stringent performance requirements of future wireless networks are spurring studies on defining the next-generation multiple-input multiple-output (MIMO) transceivers.
For the design of advanced transceivers in wireless communications, optimization approaches often leading to iterative algorithms have achieved great success.
Deep learning, approximating the iterative algorithms with deep neural networks (DNNs) can significantly reduce the computational time.
Deep-unfolding has emerged which incorporates the benefits of both deep learning and iterative algorithms, by unfolding the iterative algorithm into a layer-wise structure.
arXiv Detail & Related papers (2023-05-15T02:13:41Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
We evaluate and compare different Natural Language Processing (NLP) and machine learning techniques used for security information extraction in research.
Based on our investigations we propose a data processing pipeline that automatically classifies unstructured text according to attackers' tactics and techniques.
arXiv Detail & Related papers (2022-07-18T09:59:21Z) - Towards Industrial Private AI: A two-tier framework for data and model
security [7.773212143837498]
We propose a private (FLEP) AI framework that provides two-tier security for data and model parameters in an IIoT environment.
Experimental results show that the proposed method achieves better encryption quality at the expense of slightly increased execution time.
arXiv Detail & Related papers (2021-07-27T13:28:07Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
We train automatic recruitment algorithms using a set of multimodal synthetic profiles consciously scored with gender and racial biases.
Our methodology and results show how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.
arXiv Detail & Related papers (2020-04-15T15:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.