論文の概要: Safe Spaces or Toxic Places? Content Moderation and Social Dynamics of Online Eating Disorder Communities
- arxiv url: http://arxiv.org/abs/2412.15721v1
- Date: Fri, 20 Dec 2024 09:42:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:24:10.045452
- Title: Safe Spaces or Toxic Places? Content Moderation and Social Dynamics of Online Eating Disorder Communities
- Title(参考訳): 安全な空間と有害な場所 : オンライン食障害コミュニティのコンテンツモデレーションと社会的ダイナミクス
- Authors: Kristina Lerman, Minh Duc Chu, Charles Bickham, Luca Luceri, Emilio Ferrara,
- Abstract要約: ソーシャルメディアプラットフォームは、摂食障害を含むメンタルヘルスの懸念を議論するための重要な場所となっている。
本研究では、Twitter/X、Reddit、TikTok間での摂食障害に関する議論の比較分析を通じて、この知識ギャップに対処する。
以上の結果から,全プラットフォームにまたがるユーザが懸念を表明し,サポートを求める一方で,低調度(Twitter/Xなど)のプラットフォームは,食欲不振を増幅する有毒なエコーチャンバーの形成を可能にすることがわかった。
- 参考スコア(独自算出の注目度): 8.950110714892498
- License:
- Abstract: Social media platforms have become critical spaces for discussing mental health concerns, including eating disorders. While these platforms can provide valuable support networks, they may also amplify harmful content that glorifies disordered cognition and self-destructive behaviors. While social media platforms have implemented various content moderation strategies, from stringent to laissez-faire approaches, we lack a comprehensive understanding of how these different moderation practices interact with user engagement in online communities around these sensitive mental health topics. This study addresses this knowledge gap through a comparative analysis of eating disorder discussions across Twitter/X, Reddit, and TikTok. Our findings reveal that while users across all platforms engage similarly in expressing concerns and seeking support, platforms with weaker moderation (like Twitter/X) enable the formation of toxic echo chambers that amplify pro-anorexia rhetoric. These results demonstrate how moderation strategies significantly influence the development and impact of online communities, particularly in contexts involving mental health and self-harm.
- Abstract(参考訳): ソーシャルメディアプラットフォームは、摂食障害を含むメンタルヘルスの懸念を議論するための重要な場所となっている。
これらのプラットフォームは貴重なサポートネットワークを提供することができるが、混乱した認知と自己破壊的行動を示す有害なコンテンツを増幅することもある。
ソーシャルメディアプラットフォームは、厳しいコンテンツモデレーションのアプローチからレイセ・フェールアプローチまで、さまざまなコンテンツモデレーション戦略を実装してきましたが、これらのセンシティブなメンタルヘルストピックを取り巻くオンラインコミュニティにおける、こうしたさまざまなモデレーションの実践がユーザエンゲージメントとどのように相互作用するかについて、包括的な理解は欠如しています。
本研究では、Twitter/X、Reddit、TikTok間での摂食障害に関する議論の比較分析を通じて、この知識ギャップに対処する。
以上の結果から,全プラットフォームにまたがるユーザが懸念を表明し,サポートを求めているのに対して,弱いモデレーション(Twitter/Xなど)を持つプラットフォームは,食欲不振を増幅する有毒なエコーチャンバーの形成を可能にすることがわかった。
これらの結果は、モデレーション戦略がオンラインコミュニティの発展と影響、特にメンタルヘルスやセルフハームの文脈においてどのように影響するかを示す。
関連論文リスト
- Characterizing Online Toxicity During the 2022 Mpox Outbreak: A Computational Analysis of Topical and Network Dynamics [0.9831489366502301]
2022年のムポックスの流行は、当初は「モンキーポックス」と呼ばれていたが、その後、関連するスティグマや社会的懸念を緩和するために改名された。
我々は660万以上のユニークツイートを収集し、コンテキスト、範囲、コンテンツ、話者、意図といった5つの次元から分析しました。
我々は、Twitter上での有害なオンライン談話(46.6%)、病気(46.6%)、健康政策と医療(19.3%)、ホモフォビア(23.9%)、政治など、高レベルのトピックを5つ特定した。
有毒なコンテンツのリツイートが広まっていたのに対して、影響力のあるユーザはリツイートを通じてこの有毒な行為に関わったり、反対したりすることはめったにない。
論文 参考訳(メタデータ) (2024-08-21T19:31:01Z) - Who can help me? Reconstructing users' psychological journeys in
depression-related social media interactions [0.13194391758295113]
うつ病に関するいくつかのメンタルヘルス関連Redditボードを調査した。
ユーザの心理的・言語的プロファイルを社会的相互作用とともに再構築する。
我々のアプローチは、ソーシャルメディアを通じてメンタルヘルス問題に対処する、データインフォームドな理解への道を開く。
論文 参考訳(メタデータ) (2023-11-29T14:45:11Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
世界保健機関(WHO)によると、約4億5000万人が影響を受ける。
うつ病、不安症、双極性障害、ADHD、PTSDなどの精神疾患。
本研究では、Redditプラットフォーム上の非構造化ユーザデータを分析し、うつ病、不安、双極性障害、ADHD、PTSDの5つの一般的な精神疾患を分類する。
論文 参考訳(メタデータ) (2022-07-03T11:33:52Z) - Adherence to Misinformation on Social Media Through Socio-Cognitive and
Group-Based Processes [79.79659145328856]
誤報が広まると、これはソーシャルメディア環境が誤報の付着を可能にするためである、と我々は主張する。
偏光と誤情報付着が密接な関係にあると仮定する。
論文 参考訳(メタデータ) (2022-06-30T12:34:24Z) - News consumption and social media regulations policy [70.31753171707005]
我々は、ニュース消費とコンテンツ規制の間の相互作用を評価するために、反対のモデレーション手法であるTwitterとGabを強制した2つのソーシャルメディアを分析した。
以上の結果から,Twitterが追求するモデレーションの存在は,疑わしいコンテンツを著しく減少させることがわかった。
Gabに対する明確な規制の欠如は、ユーザが両方のタイプのコンテンツを扱う傾向を生じさせ、ディスカウント/エンドレスメントの振る舞いを考慮に入れた疑わしいコンテンツに対してわずかに好みを示す。
論文 参考訳(メタデータ) (2021-06-07T19:26:32Z) - Detecting Harmful Content On Online Platforms: What Platforms Need Vs.
Where Research Efforts Go [44.774035806004214]
オンラインプラットフォーム上の有害コンテンツには、ヘイトスピーチ、攻撃的言語、いじめとハラスメント、誤情報、スパム、暴力、グラフィックコンテンツ、性的虐待、自己被害など、さまざまな形態がある。
オンラインプラットフォームは、そのようなコンテンツを、社会的危害を抑えるため、法律に従うために、ユーザーのためにより包括的な環境を作るために、緩和しようとしている。
現在、オンラインプラットフォームが抑制しようとしている有害なコンテンツの種類と、そのようなコンテンツを自動的に検出する研究努力との間には、隔たりがある。
論文 参考訳(メタデータ) (2021-02-27T08:01:10Z) - Assessing the Severity of Health States based on Social Media Posts [62.52087340582502]
ユーザの健康状態の重症度を評価するために,テキストコンテンツとコンテキスト情報の両方をモデル化する多視点学習フレームワークを提案する。
多様なNLUビューは、ユーザの健康を評価するために、タスクと個々の疾患の両方に効果を示す。
論文 参考訳(メタデータ) (2020-09-21T03:45:14Z) - The Effect of Moderation on Online Mental Health Conversations [17.839146423209474]
モデレーターの存在はユーザーのエンゲージメントを高め、ユーザーはネガティブな感情をより率直に話し合うように促し、チャット参加者の間で悪い振る舞いを劇的に減らした。
以上の結果から, モデレーションは, オンラインメンタルヘルス会話の有効性と安全性を向上させる上で, 有効なツールとなる可能性が示唆された。
論文 参考訳(メタデータ) (2020-05-19T05:40:59Z) - Predicting User Emotional Tone in Mental Disorder Online Communities [2.365702128814616]
我々は、Redditコミュニティにおける精神障害に関する議論が、ユーザーの健康状態を改善するのにどのように役立つかを分析した。
感情状態のプロキシとしてユーザ記述の感情的トーンを用いて,ユーザインタラクションと状態変化の関係を明らかにする。
我々は、感情的トーンの変化を予測するために、SOTAテキスト埋め込み技術とRNNに基づくモデルを構築した。
論文 参考訳(メタデータ) (2020-05-15T11:25:08Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
本研究では,4つのソーシャルメディアプラットフォーム上で100万ユーザが生成した100万個のコンテンツに対して,エコーチャンバーの操作的定義を導入し,大規模な比較分析を行う。
議論の的になっているトピックについてユーザの傾きを推測し、異なる特徴を分析してインタラクションネットワークを再構築する。
我々は、Facebookのようなニュースフィードアルゴリズムを実装するプラットフォームが、エコーチャンバの出現を招きかねないという仮説を支持する。
論文 参考訳(メタデータ) (2020-04-20T20:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。