Combinatorial Optimization with Quantum Computers
- URL: http://arxiv.org/abs/2412.15778v1
- Date: Fri, 20 Dec 2024 10:46:18 GMT
- Title: Combinatorial Optimization with Quantum Computers
- Authors: Francisco Chicano, Gabiel Luque, Zakaria Abdelmoiz Dahi, Rodrigo Gil-Merino,
- Abstract summary: Quantum computers do computation with a potential advantage over classical computers.
A quantum computer can apply the operator to a superposition of binary strings to provide a superposition of binary outputs.
A family of quantum machines called quantum annealers are specially designed to solve optimization problems.
- Score: 1.199955563466263
- License:
- Abstract: Quantum computers leverage the principles of quantum mechanics to do computation with a potential advantage over classical computers. While a single classical computer transforms one particular binary input into an output after applying one operator to the input, a quantum computer can apply the operator to a superposition of binary strings to provide a superposition of binary outputs, doing computation apparently in parallel. This feature allows quantum computers to speed up the computation compared to classical algorithms. Unsurprisingly, quantum algorithms have been proposed to solve optimization problems in quantum computers. Furthermore, a family of quantum machines called quantum annealers are specially designed to solve optimization problems. In this paper, we provide an introduction to quantum optimization from a practical point of view. We introduce the reader to the use of quantum annealers and quantum gate-based machines to solve optimization problems.
Related papers
- Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - Towards Quantum Computational Mechanics [1.530480694206666]
We show how quantum computing can be used to solve representative element volume (RVE) problems in computational homogenisation.
Our quantum RVE solver attains exponential acceleration with respect to classical solvers.
arXiv Detail & Related papers (2023-12-06T12:53:02Z) - A Practitioner's Guide to Quantum Algorithms for Optimisation Problems [0.0]
NP-hard optimisation problems are common in industrial areas such as logistics and finance.
This paper aims to provide a comprehensive overview of the theory of quantum optimisation techniques.
It focuses on their near-term potential for noisy intermediate scale quantum devices.
arXiv Detail & Related papers (2023-05-12T08:57:36Z) - The Role of Entanglement in Quantum-Relaxation Based Optimization
Algorithms [4.00916638804083]
Quantum Random Access Code (QRAC) encodes multiple variables of binary optimization in a single qubit.
Our results suggest that QRAO not only can scale solvable instances of binary optimization problems with limited quantum computers but also can benefit from quantum entanglement.
arXiv Detail & Related papers (2023-02-01T13:24:51Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Multiple Query Optimization using a Hybrid Approach of Classical and
Quantum Computing [1.7077661158850292]
We tackle the multiple query optimization problem (MQO) which is an important NP-hard problem in the area of data-intensive problems.
We propose a novel hybrid classical-quantum algorithm to solve the MQO on a gate-based quantum computer.
Our algorithm shows a qubit efficiency of close to 99% which is almost a factor of 2 higher compared to the state of the art implementation.
arXiv Detail & Related papers (2021-07-22T08:12:49Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Quantum ensemble of trained classifiers [2.048335092363436]
A quantum computer is capable of representing an exponentially large set of states, according to the number of qubits available.
Quantum machine learning explores the potential of quantum computing to enhance machine learning algorithms.
arXiv Detail & Related papers (2020-07-18T01:01:33Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.