Detection of Aerial Spoofing Attacks to LEO Satellite Systems via Deep Learning
- URL: http://arxiv.org/abs/2412.16008v1
- Date: Fri, 20 Dec 2024 15:56:09 GMT
- Title: Detection of Aerial Spoofing Attacks to LEO Satellite Systems via Deep Learning
- Authors: Jos Wigchert, Savio Sciancalepore, Gabriele Oligeri,
- Abstract summary: We propose a new spoofing detection technique for LEO satellite constellation systems, applying anomaly detection on the received PHY signal via autoencoders.
We validate our solution through an extensive measurement campaign involving the deployment of an actual spoofer installed on a drone.
Our results demonstrate that the proposed technique can reliably detect spoofing attacks launched at different altitudes, while state-of-the-art competing approaches simply fail.
- Score: 3.5502600490147196
- License:
- Abstract: Detecting spoofing attacks to Low-Earth-Orbit (LEO) satellite systems is a cornerstone to assessing the authenticity of the received information and guaranteeing robust service delivery in several application domains. The solutions available today for spoofing detection either rely on additional communication systems, receivers, and antennas, or require mobile deployments. Detection systems working at the Physical (PHY) layer of the satellite communication link also require time-consuming and energy-hungry training processes on all satellites of the constellation, and rely on the availability of spoofed data, which are often challenging to collect. Moreover, none of such contributions investigate the feasibility of aerial spoofing attacks launched via drones operating at various altitudes. In this paper, we propose a new spoofing detection technique for LEO satellite constellation systems, applying anomaly detection on the received PHY signal via autoencoders. We validate our solution through an extensive measurement campaign involving the deployment of an actual spoofer (Software-Defined Radio) installed on a drone and injecting rogue IRIDIUM messages while flying at different altitudes with various movement patterns. Our results demonstrate that the proposed technique can reliably detect LEO spoofing attacks launched at different altitudes, while state-of-the-art competing approaches simply fail. We also release the collected data as open source, fostering further research on satellite security.
Related papers
- Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
Low Earth Orbit (LEO) satellites can be used to assist maritime wireless communications for data transmission across wide-ranging areas.
Extensive coverage of LEO satellites, combined with openness of channels, can cause the communication process to suffer from security risks.
This paper presents a low-altitude friendly-jamming LEO satellite-maritime communication system enabled by a unmanned aerial vehicle.
arXiv Detail & Related papers (2025-01-26T10:13:51Z) - GNSS/GPS Spoofing and Jamming Identification Using Machine Learning and Deep Learning [0.8594140167290099]
Global Navigation Satellite Systems (GNSS) are vulnerable to malicious threats such as spoofing and jamming.
Recent advancements in machine learning and deep learning provide promising avenues for enhancing detection and mitigation strategies.
This paper addresses both spoofing and jamming by tackling real-world challenges through machine learning, deep learning, and computer vision techniques.
arXiv Detail & Related papers (2025-01-04T18:14:43Z) - Infiltrating the Sky: Data Delay and Overflow Attacks in Earth Observation Constellations [13.197457702744991]
Low Earth Orbit (LEO) Earth Observation (EO) satellites have changed the way we monitor Earth.
EO satellites have very limited downlink communication capability, limited by transmission bandwidth, number and location of ground stations, and small transmission windows due to high velocity satellite movement.
In this paper, we investigate a new attack surface exposed by resource competition in EO constellations, targeting the delay or drop of Earth monitoring data using legitimate EO services.
arXiv Detail & Related papers (2024-09-02T02:20:13Z) - Unveiling the Stealthy Threat: Analyzing Slow Drift GPS Spoofing Attacks for Autonomous Vehicles in Urban Environments and Enabling the Resilience [4.898754501085215]
This study explores a stealthy slow drift GPS spoofing attack, replicating the victim AV's satellite reception pattern.
The attack is designed to gradually deviate from the correct route, making real-time detection challenging.
Changing the pseudo ranges confuses the AV, leading it to incorrect destinations while remaining oblivious to the manipulation.
arXiv Detail & Related papers (2024-01-02T17:36:07Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - The State of Aerial Surveillance: A Survey [62.198765910573556]
This paper provides a comprehensive overview of human-centric aerial surveillance tasks from a computer vision and pattern recognition perspective.
The main object of interest is humans, where single or multiple subjects are to be detected, identified, tracked, re-identified and have their behavior analyzed.
arXiv Detail & Related papers (2022-01-09T20:13:27Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
The visual inspection of aerial drone footage is an integral part of land search and rescue (SAR) operations today.
We propose a novel deep learning algorithm to automate this aerial person detection (APD) task.
We present the novel Aerial Inspection RetinaNet (AIR) algorithm as the combination of these contributions.
arXiv Detail & Related papers (2021-11-17T21:48:31Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - PAST-AI: Physical-layer Authentication of Satellite Transmitters via
Deep Learning [4.588028371034406]
PAST-AI is a methodology tailored to authenticate Low-Earth Orbit (LEO) satellites through fingerprinting of their IQ samples.
We prove that CNN and autoencoders can be successfully adopted to authenticate the satellite transducers.
arXiv Detail & Related papers (2020-10-12T06:08:11Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency.
We study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation.
To maximize the end-to-end data rate, the satellite association and HAP location should be optimized.
We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique.
arXiv Detail & Related papers (2020-05-26T05:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.