GNSS/GPS Spoofing and Jamming Identification Using Machine Learning and Deep Learning
- URL: http://arxiv.org/abs/2501.02352v1
- Date: Sat, 04 Jan 2025 18:14:43 GMT
- Title: GNSS/GPS Spoofing and Jamming Identification Using Machine Learning and Deep Learning
- Authors: Ali Ghanbarzade, Hossein Soleimani,
- Abstract summary: Global Navigation Satellite Systems (GNSS) are vulnerable to malicious threats such as spoofing and jamming.
Recent advancements in machine learning and deep learning provide promising avenues for enhancing detection and mitigation strategies.
This paper addresses both spoofing and jamming by tackling real-world challenges through machine learning, deep learning, and computer vision techniques.
- Score: 0.8594140167290099
- License:
- Abstract: The increasing reliance on Global Navigation Satellite Systems (GNSS), particularly the Global Positioning System (GPS), underscores the urgent need to safeguard these technologies against malicious threats such as spoofing and jamming. As the backbone for positioning, navigation, and timing (PNT) across various applications including transportation, telecommunications, and emergency services GNSS is vulnerable to deliberate interference that poses significant risks. Spoofing attacks, which involve transmitting counterfeit GNSS signals to mislead receivers into calculating incorrect positions, can result in serious consequences, from navigational errors in civilian aviation to security breaches in military operations. Furthermore, the lack of inherent security measures within GNSS systems makes them attractive targets for adversaries. While GNSS/GPS jamming and spoofing systems consist of numerous components, the ability to distinguish authentic signals from malicious ones is essential for maintaining system integrity. Recent advancements in machine learning and deep learning provide promising avenues for enhancing detection and mitigation strategies against these threats. This paper addresses both spoofing and jamming by tackling real-world challenges through machine learning, deep learning, and computer vision techniques. Through extensive experiments on two real-world datasets related to spoofing and jamming detection using advanced algorithms, we achieved state of the art results. In the GNSS/GPS jamming detection task, we attained approximately 99% accuracy, improving performance by around 5% compared to previous studies. Additionally, we addressed a challenging tasks related to spoofing detection, yielding results that underscore the potential of machine learning and deep learning in this domain.
Related papers
- Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
Low Earth Orbit (LEO) satellites can be used to assist maritime wireless communications for data transmission across wide-ranging areas.
Extensive coverage of LEO satellites, combined with openness of channels, can cause the communication process to suffer from security risks.
This paper presents a low-altitude friendly-jamming LEO satellite-maritime communication system enabled by a unmanned aerial vehicle.
arXiv Detail & Related papers (2025-01-26T10:13:51Z) - Detection of Aerial Spoofing Attacks to LEO Satellite Systems via Deep Learning [3.5502600490147196]
We propose a new spoofing detection technique for LEO satellite constellation systems, applying anomaly detection on the received PHY signal via autoencoders.
We validate our solution through an extensive measurement campaign involving the deployment of an actual spoofer installed on a drone.
Our results demonstrate that the proposed technique can reliably detect spoofing attacks launched at different altitudes, while state-of-the-art competing approaches simply fail.
arXiv Detail & Related papers (2024-12-20T15:56:09Z) - Long-distance Geomagnetic Navigation in GNSS-denied Environments with Deep Reinforcement Learning [62.186340267690824]
Existing studies on geomagnetic navigation rely on pre-stored map or extensive searches, leading to limited applicability or reduced navigation efficiency in unexplored areas.
This paper develops a deep reinforcement learning (DRL)-based mechanism, especially for long-distance geomagnetic navigation.
The designed mechanism trains an agent to learn and gain the magnetoreception capacity for geomagnetic navigation, rather than using any pre-stored map or extensive and expensive searching approaches.
arXiv Detail & Related papers (2024-10-21T09:57:42Z) - GPS-IDS: An Anomaly-based GPS Spoofing Attack Detection Framework for Autonomous Vehicles [1.1992484839577393]
GPS networks are vulnerable to cyber-attacks like spoofing and jamming.
This paper proposes GPS Intrusion Detection System, or GPS-IDS, an Anomaly-based intrusion detection framework.
To the best of our knowledge, this dataset is the first of its kind and has been publicly released for the global research community to address such security challenges.
arXiv Detail & Related papers (2024-05-14T06:55:16Z) - AdvGPS: Adversarial GPS for Multi-Agent Perception Attack [47.59938285740803]
This study investigates whether specific GPS signals can easily mislead the multi-agent perception system.
We introduce textscAdvGPS, a method capable of generating adversarial GPS signals which are also stealthy for individual agents within the system.
Our experiments on the OPV2V dataset demonstrate that these attacks substantially undermine the performance of state-of-the-art methods.
arXiv Detail & Related papers (2024-01-30T23:13:41Z) - Unveiling the Stealthy Threat: Analyzing Slow Drift GPS Spoofing Attacks for Autonomous Vehicles in Urban Environments and Enabling the Resilience [4.898754501085215]
This study explores a stealthy slow drift GPS spoofing attack, replicating the victim AV's satellite reception pattern.
The attack is designed to gradually deviate from the correct route, making real-time detection challenging.
Changing the pseudo ranges confuses the AV, leading it to incorrect destinations while remaining oblivious to the manipulation.
arXiv Detail & Related papers (2024-01-02T17:36:07Z) - GCNIDS: Graph Convolutional Network-Based Intrusion Detection System for CAN Bus [0.0]
We present an innovative approach to intruder detection within the CAN bus, leveraging Graph Convolutional Network (GCN) techniques.
Our experimental findings substantiate that the proposed GCN-based method surpasses existing IDSs in terms of accuracy, precision, and recall.
Our proposed approach holds significant potential in fortifying the security and safety of modern vehicles.
arXiv Detail & Related papers (2023-09-18T21:42:09Z) - Trustworthy Graph Neural Networks: Aspects, Methods and Trends [115.84291569988748]
Graph neural networks (GNNs) have emerged as competent graph learning methods for diverse real-world scenarios.
Performance-oriented GNNs have exhibited potential adverse effects like vulnerability to adversarial attacks.
To avoid these unintentional harms, it is necessary to build competent GNNs characterised by trustworthiness.
arXiv Detail & Related papers (2022-05-16T02:21:09Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
We introduce timing-based adversarial strategies against a DRL-based navigation system by jamming in physical noise patterns on the selected time frames.
Our experimental results show that the adversarial timing attacks can lead to a significant performance drop.
arXiv Detail & Related papers (2020-02-20T21:39:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.