TAACKIT: Track Annotation and Analytics with Continuous Knowledge Integration Tool
- URL: http://arxiv.org/abs/2412.16228v1
- Date: Wed, 18 Dec 2024 21:51:51 GMT
- Title: TAACKIT: Track Annotation and Analytics with Continuous Knowledge Integration Tool
- Authors: Lily Lee, Julian Fontes, Andrew Weinert, Laura Schomacker, Daniel Stabile, Jonathan Hou,
- Abstract summary: In the domain of geospatial tracks, the lack of such tools to annotate and validate data impedes rapid and accessible machine learning application development.
This paper presents Track and Analytics with Continuous Knowledge Integration Tool (TAACKIT) to serve the critically important functions of annotating geospatial track data and validating ML models.
We demonstrate an ML application use case in the air traffic domain to illustrate its data annotation and model evaluation power and quantify the annotation effort reduction.
- Score: 0.5497663232622965
- License:
- Abstract: Machine learning (ML) is a powerful tool for efficiently analyzing data, detecting patterns, and forecasting trends across various domains such as text, audio, and images. The availability of annotation tools to generate reliably annotated data is crucial for advances in ML applications. In the domain of geospatial tracks, the lack of such tools to annotate and validate data impedes rapid and accessible ML application development. This paper presents Track Annotation and Analytics with Continuous Knowledge Integration Tool (TAACKIT) to serve the critically important functions of annotating geospatial track data and validating ML models. We demonstrate an ML application use case in the air traffic domain to illustrate its data annotation and model evaluation power and quantify the annotation effort reduction.
Related papers
- Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger [49.81945268343162]
We propose MeCo, an adaptive decision-making strategy for external tool use.
MeCo captures high-level cognitive signals in the representation space, guiding when to invoke tools.
Our experiments show that MeCo accurately detects LLMs' internal cognitive signals and significantly improves tool-use decision-making.
arXiv Detail & Related papers (2025-02-18T15:45:01Z) - On Interpreting the Effectiveness of Unsupervised Software Traceability with Information Theory [12.390314973658466]
Unsupervised traceability techniques often assume traceability patterns are present within textual data.
We introduce self-information, cross-entropy, and mutual information (MI) as metrics to measure the informativeness and reliability of traceability links.
We show that an average MI of 4.81 bits, loss of 1.75, and noise of 0.28 bits signify that there are information-theoretic limits on the effectiveness of unsupervised traceability techniques.
arXiv Detail & Related papers (2024-12-06T01:29:29Z) - Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - Large Language Models for Data Annotation and Synthesis: A Survey [49.8318827245266]
This survey focuses on the utility of Large Language Models for data annotation and synthesis.
It includes an in-depth taxonomy of data types that LLMs can annotate, a review of learning strategies for models utilizing LLM-generated annotations, and a detailed discussion of the primary challenges and limitations associated with using LLMs for data annotation and synthesis.
arXiv Detail & Related papers (2024-02-21T00:44:04Z) - Statistical inference using machine learning and classical techniques
based on accumulated local effects (ALE) [0.0]
Accumulated Local Effects (ALE) is a model-agnostic approach for global explanations of machine learning algorithms.
There are at least three challenges with conducting statistical inference based on ALE.
We introduce innovative tools and techniques for statistical inference using ALE.
arXiv Detail & Related papers (2023-10-15T16:17:21Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
Tabular data is often hidden in text, particularly in medical diagnostic reports.
We propose a novel, simple, and effective methodology for extracting structured tabular data from textual medical reports, called TEMED-LLM.
We demonstrate that our approach significantly outperforms state-of-the-art text classification models in medical diagnostics.
arXiv Detail & Related papers (2023-06-08T09:12:28Z) - A Unified Active Learning Framework for Annotating Graph Data with
Application to Software Source Code Performance Prediction [4.572330678291241]
We develop a unified active learning framework specializing in software performance prediction.
We investigate the impact of using different levels of information for active and passive learning.
Our approach aims to improve the investment in AI models for different software performance predictions.
arXiv Detail & Related papers (2023-04-06T14:00:48Z) - Demonstration of InsightPilot: An LLM-Empowered Automated Data
Exploration System [48.62158108517576]
We introduce InsightPilot, an automated data exploration system designed to simplify the data exploration process.
InsightPilot automatically selects appropriate analysis intents, such as understanding, summarizing, and explaining.
In brief, an IQuery is an abstraction and automation of data analysis operations, which mimics the approach of data analysts.
arXiv Detail & Related papers (2023-04-02T07:27:49Z) - PyHard: a novel tool for generating hardness embeddings to support
data-centric analysis [0.38233569758620045]
PyHard produces a hardness embedding of a dataset relating the predictive performance of multiple ML models.
The user can interact with this embedding in multiple ways to obtain useful insights about data and algorithmic performance.
We show in a COVID prognosis dataset how this analysis supported the identification of pockets of hard observations that challenge ML models.
arXiv Detail & Related papers (2021-09-29T14:08:26Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - Improving the Performance of Fine-Grain Image Classifiers via Generative
Data Augmentation [0.5161531917413706]
We develop Data Augmentation from Proficient Pre-Training of Robust Generative Adrial Networks (DAPPER GAN)
DAPPER GAN is an ML analytics support tool that automatically generates novel views of training images.
We experimentally evaluate this technique on the Stanford Cars dataset, demonstrating improved vehicle make and model classification accuracy.
arXiv Detail & Related papers (2020-08-12T15:29:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.