論文の概要: Optimizing Low-Speed Autonomous Driving: A Reinforcement Learning Approach to Route Stability and Maximum Speed
- arxiv url: http://arxiv.org/abs/2412.16248v1
- Date: Fri, 20 Dec 2024 01:06:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:56:57.792425
- Title: Optimizing Low-Speed Autonomous Driving: A Reinforcement Learning Approach to Route Stability and Maximum Speed
- Title(参考訳): 低速自律運転の最適化:経路安定性と最大速度に対する強化学習アプローチ
- Authors: Benny Bao-Sheng Li, Elena Wu, Hins Shao-Xuan Yang, Nicky Yao-Jin Liang,
- Abstract要約: 本稿では、予め定義された経路を走行しながら、低速自動運転における最大速度安定性を維持するという課題に対処する。
低速シナリオにおいても安全性や経路精度を損なうことなく、車両が最高速に近い速度を達成できるような運転ポリシーを最適化するための新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Autonomous driving has garnered significant attention in recent years, especially in optimizing vehicle performance under varying conditions. This paper addresses the challenge of maintaining maximum speed stability in low-speed autonomous driving while following a predefined route. Leveraging reinforcement learning (RL), we propose a novel approach to optimize driving policies that enable the vehicle to achieve near-maximum speed without compromising on safety or route accuracy, even in low-speed scenarios.
- Abstract(参考訳): 自動運転は近年、特に様々な条件下での車両性能の最適化において大きな注目を集めている。
本稿では、予め定義された経路を走行しながら、低速自動運転における最大速度安定性を維持するという課題に対処する。
低速シナリオにおいても安全性や経路精度を損なうことなく、車両がほぼ最大速度を達成できるような運転ポリシーを最適化するための新しい手法を提案する。
関連論文リスト
- RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
本稿では,リスク感応制御と適応行動空間のカリキュラムを組み合わせた強化学習フレームワークを提案する。
提案アルゴリズムは,現実世界のオフロード運転タスクに対して,高速なポリシーを学習可能であることを示す。
論文 参考訳(メタデータ) (2024-05-07T23:32:36Z) - Long and Short-Term Constraints Driven Safe Reinforcement Learning for Autonomous Driving [11.072917563013428]
強化学習 (Reinforcement Learning, RL) は意思決定や制御作業に広く用いられているが, 訓練プロセスにおけるエージェントのリスクは非常に高い。
本稿では,安全RLのための長短制約(LSTC)に基づく新しいアルゴリズムを提案する。
提案手法は, 連続状態および動作タスクにおいて高い安全性を達成し, 長距離意思決定タスクにおいて高い探索性能を示す。
論文 参考訳(メタデータ) (2024-03-27T02:41:52Z) - Parameterized Decision-making with Multi-modal Perception for Autonomous
Driving [12.21578713219778]
AUTOと呼ばれる深層強化学習に基づくマルチモーダル認識を用いたパラメータ化意思決定フレームワークを提案する。
ハイブリッド報酬関数は、安全、交通効率、乗客の快適性、および最適な行動を生成するためのフレームワークを導く影響を考慮に入れている。
論文 参考訳(メタデータ) (2023-12-19T08:27:02Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - Motion Planning and Control for Multi Vehicle Autonomous Racing at High
Speeds [100.61456258283245]
本稿では,自律走行のための多層移動計画と制御アーキテクチャを提案する。
提案手法はダララのAV-21レースカーに適用され、楕円形のレーストラックで25$m/s2$まで加速試験された。
論文 参考訳(メタデータ) (2022-07-22T15:16:54Z) - Quick Learner Automated Vehicle Adapting its Roadmanship to Varying
Traffic Cultures with Meta Reinforcement Learning [15.570621284198017]
我々は,メタ強化学習(MRL)駆動ポリシーを開発し,その迅速な学習能力を示す。
MRL駆動方式の高速適応性を検証するため, 環境中の2種類の分布変動をシミュレートし, シミュレーションを行った。
論文 参考訳(メタデータ) (2021-04-18T15:04:37Z) - Amortized Q-learning with Model-based Action Proposals for Autonomous
Driving on Highways [10.687104237121408]
トラジェクティブプランナーと組み合わせて、最適な長期運転戦略を学習する強化学習に基づくアプローチを導入する。
局所最適操作をアクションとしてオンラインに生成することにより、無限の低レベル連続アクション空間と、予め定義された標準レーン変更アクションの固定数の限られた柔軟性のバランスをとることができる。
論文 参考訳(メタデータ) (2020-12-06T11:04:40Z) - Emergent Road Rules In Multi-Agent Driving Environments [84.82583370858391]
運転環境の要素が道路ルールの出現の原因となるかを分析する。
2つの重要な要因が雑音知覚とエージェントの空間密度であることがわかった。
我々の結果は、世界中の国々が安全で効率的な運転で合意した社会道路規則を実証的に支持する。
論文 参考訳(メタデータ) (2020-11-21T09:43:50Z) - Decision-making for Autonomous Vehicles on Highway: Deep Reinforcement
Learning with Continuous Action Horizon [14.059728921828938]
本稿では,高速道路における連続水平決定問題に対処するために,深部強化学習(DRL)手法を用いる。
エゴ自動車両の走行目標は、衝突することなく効率的でスムーズなポリシーを実行することである。
PPO-DRLに基づく意思決定戦略は、最適性、学習効率、適応性など、複数の観点から推定される。
論文 参考訳(メタデータ) (2020-08-26T22:49:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。