論文の概要: Autoware.Flex: Human-Instructed Dynamically Reconfigurable Autonomous Driving Systems
- arxiv url: http://arxiv.org/abs/2412.16265v2
- Date: Mon, 30 Dec 2024 07:27:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:00:06.635676
- Title: Autoware.Flex: Human-Instructed Dynamically Reconfigurable Autonomous Driving Systems
- Title(参考訳): Autoware.Flex:人間に指示された動的に再構成可能な自動運転システム
- Authors: Ziwei Song, Mingsong Lv, Tianchi Ren, Chun Jason Xue, Jen-Ming Wu, Nan Guan,
- Abstract要約: 本稿では,人間の入力を駆動プロセスに組み込んだ新しい自律運転システム(ADS)であるAutoware$.$Flexを提案する。
1)自然言語で表現された人間の指示を、ADSが理解できる形式に翻訳し、(2)これらの命令が安全かつ一貫して実行されることを保証する。
シミュレータと現実の自動運転車の両方で実施された実験は、Autoware$.$Flexが人間の指示を効果的に解釈し、安全に実行することを示した。
- 参考スコア(独自算出の注目度): 11.45791555724806
- License:
- Abstract: Existing Autonomous Driving Systems (ADS) independently make driving decisions, but they face two significant limitations. First, in complex scenarios, ADS may misinterpret the environment and make inappropriate driving decisions. Second, these systems are unable to incorporate human driving preferences in their decision-making processes. This paper proposes Autoware$.$Flex, a novel ADS system that incorporates human input into the driving process, allowing users to guide the ADS in making more appropriate decisions and ensuring their preferences are satisfied. Achieving this needs to address two key challenges: (1) translating human instructions, expressed in natural language, into a format the ADS can understand, and (2) ensuring these instructions are executed safely and consistently within the ADS' s decision-making framework. For the first challenge, we employ a Large Language Model (LLM) assisted by an ADS-specialized knowledge base to enhance domain-specific translation. For the second challenge, we design a validation mechanism to ensure that human instructions result in safe and consistent driving behavior. Experiments conducted on both simulators and a real-world autonomous vehicle demonstrate that Autoware$.$Flex effectively interprets human instructions and executes them safely.
- Abstract(参考訳): 既存の自律運転システム(ADS)は独立して運転決定を行うが、2つの重大な制限に直面している。
まず、複雑なシナリオでは、ADSは環境を誤解し、不適切な運転決定をする。
第二に、これらのシステムは人間の運転選好を意思決定プロセスに組み込むことができない。
本稿ではAutoware$を提案する。
$Flexは、人間の入力を駆動プロセスに組み込む新しいADSシステムで、より適切な判断を下し、好みを満足させることで、ADSをガイドすることができる。
1 自然言語で表現された人間の指示を ADS が理解できる形式に変換すること、2 つの重要な課題に対処する必要がある。
最初の課題として、ADS特化知識ベースが支援するLarge Language Model (LLM)を用いて、ドメイン固有翻訳を強化する。
第2の課題として、人間の指示が安全で一貫した運転行動をもたらすことを保証するための検証機構を設計する。
シミュレーターと現実の自動運転車の両方で実施された実験は、Autoware$2.99で実証された。
$Flexは人間の指示を効果的に解釈し、安全に実行します。
関連論文リスト
- Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Characterization and Mitigation of Insufficiencies in Automated Driving Systems [0.5842419815638352]
自動運転(AD)システムは安全性、快適性、エネルギー効率を高める可能性がある。
ADSの商業展開と広く採用は、部分的には乗客の安全を損なうシステム機能不全(FI)が道路の危険状況を引き起こしているため、穏健である。
本研究の目的は、FI緩和を改善し、ADSの商業展開を高速化するために、汎用的なアーキテクチャ設計パターンを定式化することである。
論文 参考訳(メタデータ) (2024-04-15T08:19:13Z) - DME-Driver: Integrating Human Decision Logic and 3D Scene Perception in
Autonomous Driving [65.04871316921327]
本稿では,自律運転システムの性能と信頼性を高める新しい自律運転システムを提案する。
DME-Driverは、意思決定者として強力な視覚言語モデル、制御信号生成者として計画指向認識モデルを利用する。
このデータセットを利用することで、論理的思考プロセスを通じて高精度な計画精度を実現する。
論文 参考訳(メタデータ) (2024-01-08T03:06:02Z) - DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral
Planning States for Autonomous Driving [69.82743399946371]
DriveMLMは、現実的なシミュレータでクローズループの自律運転を実行するためのフレームワークである。
モジュールADシステムの動作計画モジュールをモデル化するために,MLLM (Multi-modal LLM) を用いる。
このモデルは、Apolloのような既存のADシステムでプラグイン・アンド・プレイすることで、クローズループ運転を行うことができる。
論文 参考訳(メタデータ) (2023-12-14T18:59:05Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z) - Explaining Autonomous Driving Actions with Visual Question Answering [3.0072636355661277]
本稿では,質問応答に基づく因果推論を用いた運転行動の説明を行う視覚質問応答(VQA)フレームワークを提案する。
実証的な結果は、VQAメカニズムが自動運転車のリアルタイム意思決定を支援することを示唆している。
論文 参考訳(メタデータ) (2023-07-19T18:37:57Z) - Drive Like a Human: Rethinking Autonomous Driving with Large Language
Models [28.957124302293966]
本研究では,大規模言語モデル(LLM)を用いた運転環境の人間的理解の可能性を探る。
実験の結果,LLMは長い尾の症例を推論し,解決する優れた能力を示すことがわかった。
論文 参考訳(メタデータ) (2023-07-14T05:18:34Z) - Parallelized and Randomized Adversarial Imitation Learning for
Safety-Critical Self-Driving Vehicles [11.463476667274051]
運転システムを安全に制御するために、信頼性の高いADAS機能調整を検討することが不可欠である。
本稿では,RAILアルゴリズムを提案する。
提案手法は, LIDARデータを扱う意思決定者を訓練し, 多車線複合高速道路環境における自律走行を制御できる。
論文 参考訳(メタデータ) (2021-12-26T23:42:49Z) - Reinforcement Learning Based Safe Decision Making for Highway Autonomous
Driving [1.995792341399967]
マルチレーン・シングルエージェント環境での自動運転車の安全な意思決定方法を開発した。
提案手法は深層強化学習を用いて,安全な戦術的意思決定のためのハイレベルな方針を実現する。
論文 参考訳(メタデータ) (2021-05-13T19:17:30Z) - Towards robust sensing for Autonomous Vehicles: An adversarial
perspective [82.83630604517249]
結果として得られる決定が摂動に対して堅牢であることは、最も重要なことです。
敵対的摂動は、意図的に環境や感覚測定の修正を施したものである。
より安全なシステムの構築とデプロイには,センサーシステムの脆弱性を慎重に評価する必要がある。
論文 参考訳(メタデータ) (2020-07-14T05:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。